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Abstract

Forecasting is a critical activity for economists, financial analysts, and businesses engaged in budgeting and
planning. Recent advances in Data Science promise greater forecasting sophistication and accessibility,
often through automated or semi-automated tools. However, these techniques also carry risks, particularly
when users are unaware of the underlying data-generating processes. This paper compares popular Data
Science forecasting approaches with long-standing Econometric methods using simulated data under
varying assumptions about noise and structural complexity. The results show that while Data Science
methods can perform competitively in highly noisy environments, structural econometric models
consistently outperform them when data noise is low or when underlying relationships are complex. This
reinforces a long-standing insight often missed by automatic approaches: the source and structure of shocks
matter for accurate forecasting.
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1. INTRODUCTION

In recent years, “Data Science” has become an increasingly popular and important field in financial
analysis, academia, business and policymaking. At its heart, this field encompasses a variety of statistical
techniques to interpret and uncover insights in often large quantities of data. One key application of this
is in the area of forecasting, where statistical patterns are identified using models that then predict future
values of data or time series. In a business context, this can include forecasts of revenue and profitability
that guide management decisions on investment, hiring and other factors. The rise of such Data Science
techniques - often largely automated and with attractive user interfaces (Uls) - has been notable as
computing power has increased.

Recent work in financial machine learning demonstrates that modern data-driven methods - Large
Language Models (LLMs), deep neural networks, and reinforcement learning - can materially improve
prediction, allocation, and execution decisions across financial tasks. Fine-tuned LLMs applied to
financial newsflow generate return forecasts that outperform sentiment-based baselines, with aggregated
token representations and decoder-only models delivering the strongest portfolio enhancements [1]. In
related work, deep portfolio-optimisation frameworks can achieve higher cumulative returns, improved
Sharpe ratios, and lower drawdowns by jointly modelling temporal structure, cross-asset correlations,
transaction costs, and risk [2]. In credit risk, workflow-based machine learning combining
Weight-of-Evidence encoding, ensemble learning, and multi-objective optimisation improves both
predictive accuracy and profitability, with deep ensembles consistently outperforming traditional
statistical and tree-based models [3]. Reinforcement-learning approaches have provided insights into
dynamic trading behaviour: for instance, modelling limit order management as a Markov decision
process shows that queue position, surrounding depth, volatility, and tick-size constraints jointly
determine order value, and that the option to cancel accounts for roughly a fifth of a limit order’s expected
value [4]. There are reasons to be cautious: a review of explainable Al in finance highlights the sector’s
dependence on opaque models and the dominance of SHAP (SHapeley Additive exPlanations),
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feature-importance, and rule-based techniques, while underscoring persistent challenges around
transparency, regulatory compliance, and methodological consistency [5]. But collectively, these studies
show that new Data Science methods can substantially enhance financial decision-making, while also
highlighting the growing importance of explainability and risk-aware optimisation.

These new techniques, and others, therefore offer greater sophistication for analysts. But forecasting
share prices, revenues or some other financial data is nothing new. Economists have been forecasting
developments at individual businesses - or economies as a whole - for decades. Econometrics is the
particular branch of statistics that focuses on this activity, alongside similar attempts to unpick patterns
in data and test how they correspond to economic theory.

The purpose of this paper is, in a deliberately limited context, to compare the forecasting
performance of common Data Science and Econometric methods using simulated data. The key
advantage of this approach is that it allows us as testers to know exactly what the underlying properties
of the data are; however, the modelling approaches that we are testing are blind to the underlying
assumptions in the simulations. As such, this allows us to test and compare the forecasting ability of
different models and different approaches. In turn, this then offers guidance as to when Data Science may
be more appropriate for forecasting purposes, and if and when Econometrics may be more accurate.

At its heart, this experiment addresses a very old question at the heart of economic analysis. Suppose
an analyst is forecasting profitability for a company that has some dependence on oil - either a beneficial
or costly link. A natural question they may ask could be: what is the impact of a $10 movement in the
price of 0il? To a pure data scientist, this question would be approached by examining data on oil prices,
company profitability, and other variables: and while it could be expressed within some range of
uncertainty, there would be a central estimate. To an economist, in order to answer this question we must
first understand why the oil price moved by $10: the source of the shock matters. This is a critical point
noted by both policymakers [6] and researchers [7].

The rest of this paper is set out as follows. The next section offers a brief discussion of Data Science
and Econometrics and their differences, together with some common forecasting approaches that we will
test. Section 3 discusses how simulations can be used to test different models and forecasts, and focuses
on two sets of simulations: one where the data structure relatively simple or well-behaved; and one where
it is more complex, and arguably realistic. Section 4 discusses results from these different sets of
simulations, focusing on a simple metric of relative forecasting performance across the Data Science and
Econometric approaches. Finally, Section 5 concludes.

2. Exploring different statistical approaches

Statistics is the specific branch of mathematics that deals with the collection, analysis, interpretation,
presentation, and organization of data. It is a powerful tool used in various fields, notably finance and
economics, but also medicine, engineering, and more. The study of statistics is essential for making
decisions that are informed by data, and more broadly for understanding how the world around us works.

At the core of statistical analysis is the process of summarizing and analyzing often large amounts
of data, and trying to identify significant patterns and trends. For instance, in public health statistics are
used to track the spread of diseases, evaluate the effectiveness of treatments, and inform policy decisions
— this was crucial during the recent COVID-19 pandemic. In business, companies use statistical analysis
to understand market trends, customer behavior, and to make strategic decisions about investment, hiring
and other long-term bets.

Broadly, a key distinction can be drawn between descriptive statistics and so-called inferential
statistics. The former focuses on summarizing data so that it can be easily understood by non-experts.
This often means focusing on central tendencies in statistical distributions (e.g. means or modes)
alongside indicators of variation (such as range and standard deviation). The main function here is to
present data effectively, and build understanding.

In contrast, inferential statistics focus on making predictions about as-yet unobserved outcomes.
This can include extrapolating to ‘population’ outcomes based on data samples, but also forecasting
movements in revenues, profitability and stock prices. Typically, such inferential analysis is presented
alongside estimated measures of uncertainty, for instance indicating the degree of uncertainty around a
forecast. It is this aspect in particular — forecasting future outcomes — that this paper will focus on. This
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helpfully allows us to abstract from very real challenges in other areas of statistics, such as data cleaning
and collection.

Both Data Science and Econometrics offer a range of different approaches to forecasting future
outcomes. In recent years, Data Science techniques have gained prominence and popularity, offering
forecasters new techniques. The fundamental question that this paper seeks to address is simple: does
Data Science or Econometrics produce better forecasts?

In order to address this, we start by exploring each broad field, and some common applications, in
turn.

2.1. Data Science: two common applications

To practitioners, Data Science is known as an interdisciplinary field that combines domain expertise,
programming skills, and knowledge of mathematics and statistics to extract meaningful insights from
data. It involves using scientific methods, processes, algorithms, and systems to analyze structured and
unstructured data. The goal of Data Science is to uncover hidden patterns, correlations, and trends that
can inform decision-making and drive strategic planning.

At its core, Data Science is about transforming raw data into actionable insights. This process
typically involves several stages, including data collection, data cleaning, data analysis, and data
visualization. Data Scientists use a variety of tools and techniques to perform these tasks, including
programming languages (like Python and R), statistical software, and machine learning algorithms.

In recent years, Data Science has experienced a meteoric rise in prominence. This can be attributed
to several factors. Two that go hand in hand are the rapid increase in the quantum of data generated each
day; and advancements in technology that allow for the highly efficient analysis of large data sets,
including data processing frameworks. As part of this, advancements in machine learning and artificial
intelligence are often cited. Neither of these is a new concept, in the sense of having existed for several
decades; but the current power of these approaches has advanced to the point where computers and
algorithms can now make predictions without human interaction.

There are many different Data Science techniques, including simple regressions such as Ordinary
Least Squares (OLS), hierarchical clustering, natural language processing, and A/B testing. Ongoing
advances in machine learning and artificial intelligence have already made it easier for humans to use
these techniques, often with automatic selection of key parameters or other model choices. For the
purposes of this paper, we will focus on two specific forecasting techniques that have gained prominence
in recent years. These are the so-called LASSO approach, and General-to-Specific (or GETS) modelling.

2.1.1. A primer on LASSO

LASSO, which stands for Least Absolute Shrinkage and Selection Operator, is a form of regression
analysis. The key difference, compared with OLS, is that LASSO performs both variable selection and
regularization to enhance the prediction accuracy and interpretability of statistical models. The approach
is based on initial work by Tibshirani [8], with further development by Zou ef a/ [9] and others.

The core principle of LASSO is to adjust the normal (OLS) regression process by incorporating a
“penalty” term that constrains the sum of the absolute values of the model parameters. This penalty is
controlled by a so-called “regularization parameter”, which can be assigned or (semi)automated.

One of the key benefits of LASSO is its ability to automatically select variables. By shrinking some
coefficients in the model to zero, LASSO effectively excludes those variables from the model. This
enhances model simplicity, making it easier to interpret, and is particularly useful for large datasets that
have a large number of potential predictors.

As a consequence, LASSO is also beneficial in addressing multicollinearity. Multicollinearity
occurs when predictor variables are highly correlated — this can make it difficult for statistical approaches
to accurately estimate the (relative) size of different coefficients. By penalizing the absolute size of the
coefficients, LASSO reduces the variance of the estimates, which can lead to more stable and reliable
models.

35



NEXUS

k PRESS Journal of International Financial Trends (JIFT)
One downside of LASSO is that it can often lead to very small models, for example only selecting
one variable from a group of correlated regressors. The choice of the regularization parameter is crucial,
although algorithms can select that automatically if required.
In summary, LASSO is a powerful tool for creating parsimonious models that balance complexity
and predictive performance. This makes it a useful forecasting tool.

2.1.2. A primer on GETS

The General-to-Specific (GETS) approach in statistical modeling is a systematic method used to
simplify complex models while retaining their core characteristics.

The process starts with large, unrestricted models — an initial forecasting model that includes many
forecasting variables that may or may not be relevant. The GETS process then automatically tests for any
mis-specifications in the model, to check it is a good representation of the data; and then starts to
automatically exclude variables that are found to be insignificant, step by step. The aim of GETS is to
arrive at a parsimonious model that accurately corresponds to the data but is also small and tractable for
forecasting and interpretation. Once a final model has been obtained, many GETS processes then also
perform validation, for example by testing the stability of the estimated model parameters across sub-
samples.

GETS processes are nothing new in and of themselves: Hendry [10] offers a useful history here.
But, as with other Data Science techniques, recent advances in computing power and coding have shifted
the process from a manual one, where human inspection was required to remove insignificant variables,
to a now wholly-automated process where the final model — and its forecast outputs — are delivered to
users without any human intervention. As such, they are an increasingly popular tool for forecasters.

In practice, LASSO and GETs are similar approaches, statistically speaking. They both involve a
step-wise process, where in each step a variable is examined to ascertain whether it should be added to
(or removed from) the list of regressors. A key difference is that LASSO shrinks estimated coefficients
towards zero in a data-dependent way, while GETS does not. But depending on parameterization, it may
be the case that LASSO and GETS yield similar results.

2.2. Econometrics: two common approaches

As noted earlier, there are many commonalities between Data Science and Econometrics, the
statistical branch of Financial and Economic forecasting. Financial forecasters often use regression
analysis, GETS and even LASSO models in their work. But the key difference is that, further to that
analysis, econometrics also seeks to test or uncover underlying economic relationships from the data.

The key difference here is between what Econometricians often call “reduced form™ and “structural”
analysis. Reduced-form analysis imposes no structure on the data - in essence, it is very similar to Data
Science in “letting the data speak”. The focus is on uncovering patterns in the data that can be used to
build understanding and make predictions. One challenge here is that reduced form analysis does not in
any way uncover genuinely causal relationships: and it is often easy to mistake correlation for causality,
particularly if users of such reduced-form analysis are relatively inexperienced.

In contrast, structural econometric models aim to uncover the underlying economic mechanisms
that sit beneath the data. This implies incorporating economic theory and assumptions to specify some
aspects of how different economic agents interact, which makes these approaches more complex than
reduced form models: they require a degree of insight or judgement from an economist. However, that
structure - if not mis-specified - then allows for a deeper insight into the causal relationships between
data series, and is more useful for estimating the impact of economic factors, such as demand shocks or
policy changes.

For the purposes of this paper, we will focus on two different econometric approaches in order to
compare and contrast against the Data Science approaches detailed earlier. The first is based on a so-
called structural VAR, or SVAR; and the second is based on cointegrated factor demand equations.
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2.2.1. Structural VARs

At its heart, a vector autoregression or VAR is a simple, parsimonious model that summarizes
statistical relationships between different variables. In finance and economics, VARs are often used to
estimate relationships between key economic variables such as GDP growth, inflation and interest rates.
We will refer to such a simple three-variable model in the illustration below.

The first output from a VAR analysis will be a reduced-form model — as with the Data Science
approaches described earlier, there is no structural interpretation that lets us establish or infer causality.
So economists then need to impose some form of structure on the model in order to allow such a causal
interpretation. The popularization and insight of imposing structure owes much to the work of
Christopher Sims, as Christiano [11] details.

There are many different ways to do this. A popular approach is the so-called Cholesky
decomposition. This essentially assumes that, when a shock hits the economy, it affects different variables
in the model at different times. For the simple three-variable model outlined above, a common
assumption is that a monetary policy shock — for example a rise (or cut) in policy interest rates that was
not expected — will affect interest rates first, then GDP growth, and finally inflation. This simple
difference in the timing of the impacts is enough to transform the estimated (reduced-form) residuals
from the model into structural economic shocks.

However, the Cholesky method has often been criticized, and there are other approaches to structural
identification as well. One simple one is the imposition of sign restrictions, which can either be short- or
long-term. In the three-variable model, we could impose that an unexpected rise in interest rates (a
monetary tightening) would initially raise interest rates, decrease GDP growth, and decrease inflation.
But crucially all three could happen at the same time. Several papers detail the process and outcomes
from sign-restriction VARs, including Uhlig [12] and Ellis et al [13].

Sign restrictions also allow the reduced-form model residuals to be transformed into economic
shocks — and then the different impact of those shocks can be examined. To return to the question asked
at the start of this paper, if a demand shock leads to a $10 increase in the price of oil, its impact on oil
prices — and the broader economy — will be different than if a supply shock drove the $10 increase.
Understanding which structural shocks are playing out is therefore crucial not only for interpreting the
data, but for forecasting as well.

2.2.2. Cointegrated structural relationships

Before starting any form of modelling, it is important to first understand how the data behave. One
crucial aspect here is stationarity. A data series is stationary if its mean and variance do not change over
time; or put simply, that data are well behaved.

The reason stationarity matters so much is that many data series — including company revenues,
profits and even employment — will typically be non-stationary, even if the company is relatively stagnant.
As such, any analysis that is not designed to adjust for this statistical property has the potential to be
misleading.

One particular technique in econometrics exploits non-stationarity in data to uncover structural
economic relationships. A particular example that lends itself to this is the estimation of factor demand
equations. These are long-term relationships that describe how wages, prices, output and employment
evolve (for labour demand) or how prices, output, investment and the price of investment goods evolve
(for capital demand). The focus here is on uncovering the equilibrium relationship will become evident
once short-term deviations from equilibrium have dissipated — or in other words, the equilibrium that the
economy will tend towards. Ellis & Price [14] describe this in a UK context for the capital side of
corporate behaviour; and Ellis [15] extends it to cover both labour- and capital-demand relationships.

The standard modelling approach here — known as a Vector Error-Correction Model, or VECM —
therefore incorporates not just the long-term economic relationships, but also information about how the
economy moves back towards those equilibria, while being (in principle) relatively agnostic about the
short-term dynamics that are present in the economy. It therefore offers a very powerful means of testing
for underlying structural relationships in economic data, and the degree to which those influence
economic dynamics.
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A key element of cointegrated approaches is that they tie movements and differences in levels
together over time. Arguably, this is both more realistic and applicable to real-world examples than
simple dynamic models that focus only on changes — Chief Financial Officers care about the level of
revenues, not just the growth rate — but it is also more complex, from a forecasting perspective. Very
simple models of non-stationary data series will be mis-specified and mis-leading almost by construction:
unless forecasting models account for the potentially explosive nature of the variance of non-stationary
data series, they will fail. That makes this form of data and modeling another good one to test.

3. Generating data & testing forecasting approaches

In order to test the forecasting performance of the different Data Science and Econometric
approaches described above, we need to find some data to use. One option here is to use economic or
financial data, either from companies or economies, to construct models, use them to forecast and then
compare outcomes.

The challenge with this approach is that, ultimately, we will never know which model is “right”.
Without certainty about the underlying relationships that exist between different data, it would be
possible for a model to look credible, and perform well over a short sample, but ultimately still be
misleading.

The alternative is to generate simulated data against which we can test different forecasting
approaches. Critically, the underlying data generating processes (DGPs) used here are based on
assumptions; but those DGPs are also ‘invisible’ to the models that will be used for forecasting purposes.
Instead, these models can only see data similar to those available to economists or business forecasters.
There are several ways to do this in practice; but for this analysis, we first generated the underlying
relationships, and then layered on ‘noise’ that distorted the signals that the models are able to see. This
means that we can monitor both ‘true’ underlying relationships, and the noisy data that are available to
uncover them; and, importantly, we can vary the degree of ‘noise’ and see what sort of impact it has on
forecasting performance.

It is important to emphasize that, from the perspective of the hypothetical modeler, many ‘truths’
are unknown, including the underlying relationships in the data, and the degree of noise applied: the
‘observed’ data is ultimately a combination of these two elements. Essentially, the application of different
statistical models is a mechanism for trying to uncover the differences between this noise and the true
relationships.

Following the structure described earlier, we applied two separate DGPs. The first was based on a
simple structure where two variables — assumed to be changes in selling price and changes in quantity
sold — were driven by underlying structural shocks to demand and supply. In standard economic fashion,
a positive demand shock raised both price and quantity; and a positive supply shock would raise quantity
but lower price.

Formally, this first, simple DGP can be specified as:

Apy = aDe — BS + Uy
Aqy = yDe + 65 + pg

Where p denotes price, ¢ denotes quantity, D denotes demand and S denotes supply. All four
coefficients (a, 3, y, d) are positive and greater than zero, and y; ; denotes random noise (Gaussian shocks)
in price and quantity changes. The demand and supply variables themselves can be thought of as
innovations from period to period. Importantly, while this is the underlying DGP, the models we will
estimate only observe changes in price and quantity.

This means that, when estimating models that would be used to create forecasts, the underlying
demand and supply shocks were not visible. Instead, the models had to capture this as best they could
given their nature and structure, where differences in approach across the different models reflected the
differences between the Data Science and Econometric approaches described earlier.
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The second DGP was more complex, relating the level of different variables to each other. In
particular, instead of looking at changes in prices and changes in quantities, the underlying structural
relationship was between the level of prices and the level of quantities. Furthermore, any deviations from
this structural relationship could have an impact on future changes in prices and quantities, as the system
moved back to equilibrium. Technically, this means that different stochastic processes are related to one
another, and have a tendency to adjust after shocks. As with the simpler DGP described above, the
underlying structure here again had ‘noise’ layered on top of it, so that the data that were visible for
forecasting purposes were not the same as the underlying structural relationship.

Formally, this second and more complex DGP can be specified around the long-run relationship
between the two key variables, x and y:

Xe=p+ Iy,
The dynamic form of the DGP is then:
J J J
Ax, = Z T Ax_j + Z @Ay, + Z Wi Az j+ Py(Xeoqg — P — VY1) + &x
1 1 1
k k k

Ay, = Z Ty Axpg + Z Qi Ay + Z Wy Az_y + ®y(xt—1 —p—9y4) + Eyt
1 1

1

where z represents a vector of other variables affecting the dynamic path of the two key variables
(but not the long-run relationship), and the ¢ terms are again Gaussian noise. Typically, the estimated lag
structure across the two equations would be the same (j=k), but that does not have to be the case.

Armed with these simulated data, we can then estimate models on part of the time series up to a cut
off point: use those estimated models to construct forecasts for observations beyond that cut off point;
and then compare those forecasts against the actual outcomes in the simulated data. This approach is a
formal “out of sample” test of forecasts, which is critical for testing the value of predictions and
predictive models. In-sample fit, which models are often designed to maximize by default, is no
guarantee of out-of-sample forecast performance.

Given the slightly adversarial nature of this exercise — testing Data Science techniques against
Econometric ones — it is also helpful to have a simple summary statistic that captures the key results. The
key metric we will use here is the ‘multiple’ — how accurate Data Science forecasts are relative to
Econometric ones. This approach has previously been used for comparing stress tests [16].

Formally, the “multiple” here is calculated as the standard deviation of the forecast error from a
Data Science forecasting approach, divided by the standard deviation of the forecast error from an
Econometric approach. If Data Science is more accurate than Econometrics, this multiple will be below
1; if it is less accurate, the number will be higher than one. While more detailed statistics and comparisons
are also available, the key advantage of using this multiple is that it offers a simple and intuitive
interpretation.

4. Simulation results from simple and complex data simulations

This section reports results from the two sets of simulations described earlier. The first used a simple
DGP that linked changes in prices to changes in quantities. The second used a more complex DGP,
arguably more prevalent in real-world applications, where the relationship was between levels of the
variables, and deviations from equilibrium could affect future changes.

4.1. Results from the simple DGP

To start with, we focused on simulations that were based on the simple underlying data structure.
This simple DGP assumed that changes in prices and quantities were related to unobserved demand
shocks and supply shocks, and some ‘noise’ that we introduced, which could vary across simulations.
For simplicity, the noise terms were assumed to be Gaussian — zero mean and with fixed variance within
any given set of simulations (the variance could vary across simulation sets, specified in units of &, the
lowest calibration). All calibrations of DGPs in this paper were based on empirical results from quarterly
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data: so one period is equal to one quarter in the simulations. Based on the ‘observed’ price and quantity
data made available to the hypothetical modeler, we then built Data Science and Econometric models to
forecast future changes, and compared the results.

To do this, 5,000 simulations were run: creating data, estimating models, and testing forecasting
performance each time for a new batch of data. These were run across an initial spread of 25 different
parameterizations for the ‘noise’ terms, but this was cut to 10 after initial work indicated faster-than-
expected convergence in results.

The forecasts were constructed and compared one quarter ahead (1QA) of the data available to the
model; but also five periods ahead (5QA) and nine periods ahead(9QA), consistent with the quarterly
data frequency that economists and financial analysts often use. The initial results compared the LASSO
Data Science approach with the SVAR Econometric approach, where the structural parameterization was
also unknown and had to be estimated in the model: only the functional form of the short-term restrictions
was specified.

Exhibit A presents outcomes from these simulations, in particular the average (mean) estimate of
the multiple comparing forecast performance from the Data Science and Econometric approaches. The
vertical axis is the multiple, and the horizontal axis represents the degree of ‘noise’ in the data that was
used to mask the true underlying relationships in the data.

Exhibit A: Relative forecast performance for a simple DGP

Multiple estimates (medians)
4
35
3
2.5
2
15
1
0.5
0

—I10A =—=50QA =—290A

1o 20 30 4o 50 60 7o 8o 90 100
Noise parameter

Source: Author’s calculations.

Two key results jump out very clearly. Firstly, although there are three lines on this chart, they all
almost on top of one another. This means that the relative forecast performance — Data Science versus
Econometrics — is similar across forecast horizons (one, five and nine quarters ahead). Unsurprisingly,
the individual forecast performance of both approaches deteriorated the further into the future the forecast
was — it is much easier to forecast next month than what will happen in two years’ time. But interestingly,
in this relatively simple framework, the relative performance of the two approaches deteriorated at the
same pace.

The second key result is that, in this testing framework, Data Science forecast performance is at best
only on a par with Econometrics; and then only when the ‘noise’ in the data is high. Where noise is low,
the forecasting performance of the SVAR approach is significantly better than the LASSO approach —
the multiple is 1.5 or even higher. And when noise is high, the central estimate of the multiple converges
towards 1 — indicating similar forecasting performance — but does not fall below it.

To clarify, there were individual simulations where a LASSO forecast was better than the SVAR
forecast; but that is not surprising given the randomness that we have injected into the simulated data.
The starting point for judging the simulations results is the central tendencies; but we can also inspect
the broader distribution of results.

Exhibit B presents a combination of these central and distributional outcomes from the 50,000
simulations, this time for the 1-period ahead forecasts. Exhibit B demonstrates that the central tendencies
shown in Exhibit A are a decent guide to the overall distribution; the different percentiles either side of
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the median converge at a similar pace and in a similar manner. Interestingly, however, they are not
symmetric even at high noise values. The 90% percentile at the highest noise calibration is 1.34, indicating
DS forecasting performance was 34% worse than E; but the 10" percentile was 0.94, indicating it was
only 6% better in that instance.

Exhibit B: Distributional results for one-quarter-ahead multiples, simple DGP

Multiple estimates 10th percentile

6 = 25th percentile
5 Median

=== 5th percentile
4 = 30th percentile
3
2
1
0

1o 20 3o 4o 50 6o 7o 8o 90 100
Noise parameter

Source: Author’s calculations.

Importantly, the broad results shown above were robust to various forms of sensitivity analysis.
Most obviously, this included using a different Data Science framework — the GETS approach — instead
of LASSO. Perhaps this is unsurprising, given the similarities between LASSO and GETS. But it is
striking that, at best, the Data Science approaches only match the forecast performance of the
Econometric approach at high noise levels; and are worse with less noise.

4.2. Simulation results from a more complex (realistic) DGP

The second group of simulations were based on a more complex underlying data structure, based
on relationships between levels of non-stationary variables, akin to the VECM framework described in
Section 2.2.2.

As in the previous section, two variables were constructed that were cointegrated in the underlying
data, and with a degree of convergence when deviations from that cointegrating relationship were
observed. Once again Gaussian noise was added to the underlying data, so that the ‘observed’ data made
available to the assumed modeler conflated this relationship and the noise terms; and then Data Science
and Econometric models were built to forecast future data, and results were compared.

One difference with this approach was that we gave both sets of models — Data Science and
Econometrics — less information about the underlying structure of the relationship. In the simulations
presented earlier, the complete observed time series were available, and the models were estimated based
on the simulated data that directly related to the underlying relationship.

In this simulation, the approach was different, relating to the underlying DGP being specified in
levels, rather than changes. For reduced-form approaches, the difference should be negligible, because —
together with a constant — a time series (or history) of changes can always be accumulated to get the
exact evolution of the level of different variables. But for the structural Econometric approach, the
functional form of the long run relationship was not given to the hypothetical modeler — instead, it had
to be estimated as part of the process. This essentially means that the Econometric model here is a “quasi-
VECM?” approach, as we are not specifying or estimating the structural relationship first; this is the
normal approach, for instance as discussed in Ellis & Price (2004). Basically, we are making life harder
for the structural Econometric approach — we are applying only the most limited form of analytical
judgement — where the Data Science approaches were already agnostic.
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Once again 5,000 simulations were run across ten different calibrations for the variance of the ‘noise’
terms, increasing in size. A plot of the resulting mean multiples is shown in Exhibit C.

Exhibit C: Relative forecast performance for a more complex DGP
Multiple estimates (medians) — 1 0A 5QA 90A
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Source: Author’s calculations

The results from this more complex DGP are significantly different from those in the simple
approach. An initial glance could suggest that forecast accuracy is higher here, given the lower multiples
in Exhibit C than in Exhibit A. But is it important to note that the multiples are ratios of different forecast
errors — and actually, the absolute forecast errors (for the econometric approach) underpinning Exhibit A
are smaller than those in Exhibit C. It is just that the ratio of errors (Data Science compared with
Econometric) is lower.

There are two substantive points of note from the chart. First, there is a very obvious difference in
relative forecast performance at different forecast horizons. The Lasso approach is closest to the quasi-
VECM approach when forecasting one quarter ahead; but performs significantly worse five quarters
ahead, and even worse again at nine quarters ahead. It is interesting that the deterioration in relative
performance is bigger between one and five than between five and nine; this could be linked to the
inherent uncertainty that all forecasting approaches face at longer horizons.

Second, there is also clearly different relationship between the degree of noise in the data, and the
relative forecasting performance. Now, the degree of convergence in forecast accuracy between Lasso
forecasts and the structural econometric (quasi-VECM) approach is very limited. Instead, the lines are
broadly flat in Exhibit C as ‘noise’ in the data increases, compared with the significantly convex and
being downward-sloping curves in Exhibit A. This suggests that greater complexity in the underlying
relationships between data may be a significant hindrance to the LASSO forecasting method, particularly
if it involves trying to interpret stationary noise against a backdrop of non-stationary data. Yet this is
exactly what many businesses do when they try to forecast revenue and cost developments over time.
Structural identification — an econometric approach, rather than a pure data-driven one — matters, even
when noise is large.

One commonality is that the distributional results effects around the central tendencies shown in
Exhibit C did correspond closely: Exhibit D presents results for one-quarter-ahead forecasts. Although
the central tendencies behave differently, the distributional picture in Exhibit D is similar to that shown
in Exhibit B.
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Exhibit D: Distributional results for one-quarter-ahead multiples, complex DGP
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As with the simpler simulations, once again the broad results here were robust to various forms of
sensitivity analysis, including replacing the LASSO approach with a GETS modelling approach. As with
the earlier results, that is likely to reflect the high degree of commonality between different Data Science
forecasting methods.

5. Discussion & conclusions

Forecasting is important in many different fields, but particularly in finance and accounting. Being
able to predict future revenues and profits with a degree of accuracy is critical input for business leaders
to be able to manage, plan and direct resources.

Thanks to the continued expansion of computing power, and wider availability of different
forecasting techniques, it is now relatively simple for non-technical specialists to build models and
produce forecasts, including for complex financial metrics and processes. The range of options that fall
under the “Data Science” description have particularly risen in recent years. This democratization of
forecasting options and power is a welcome step.

But while Data Science techniques offer new tools to practitioners, many challenges, assumptions
and even pitfalls can still lead to bad forecasting performance, under certain conditions. When those
assumptions and risks are hidden behind a nice user interface, users may not even be aware they exist.
One particular challenge is the issue of addressing causality, and uncovering structural relationships
within the data — something that economists have long grappled with.

To illustrate these issues, this paper has used Data Science techniques to produce and test forecasts
against approaches from the field of Econometrics, where analytical judgement is crucial to address these
issues. Using simulated data — both from a simple process and from a more complex and realistic one —
we test relative forecasting performance across these approaches.

It is important to remember that these are only two sets of simulations, albeit ones that try to replicate
the real-world scenarios that financial and economic forecasters have to deal with. And the results are
striking. In the simple simulations, the two approaches do yield similar forecasting power; but only when
the ‘noise’ in the data is relatively high. When the underlying relationships are less uncertain, the
structural model outperforms the reduced-form one. In the more complex simulations, the reduced-form
approaches fare worse; even the limited analytical judgement applied to the structural approach yields
significant and persistent gains in forecasting power, even when ‘noise’ in the data is high. At the moment,
machine learning and artificial intelligence techniques are unable to apply judgement in this manner; and
even the so-called ‘causal AI”’ models are not typically focused on addressing the issue of identifying
structural economic relationships.

For financial institutions, these findings have direct implications for the design and governance of
forecasting frameworks. Automated or machine-learning-based approaches may be attractive because
they scale easily and require limited analytical judgement. However, the simulations here suggest that
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such approaches may be materially less reliable when underlying relationships are complex or when the
signal-to-noise ratio is relatively high. In applications such as stress testing, expected-loss modelling,
and internal capital planning, structural econometric models may therefore offer more robust and
interpretable forecasts, particularly when understanding the economic mechanism behind a projection is
as important as the projection itself.

For regulators and supervisory authorities, the results reinforce the importance of model governance
expectations that go beyond simple measures of in-sample fit or short-run predictive accuracy. If reduced-
form or fully automated tools cannot reliably distinguish between shocks with different economic
implications, then prudential oversight may be weakened. Requiring institutions to demonstrate an
understanding of the structural drivers embedded in their models, to test robustness under alternative
structural assumptions, and to articulate the economic narrative behind their forecasts is therefore a
natural complement to technical model validation.

This is obviously good news for economists who are used to making such analytical judgment calls;
they can help companies identify and understand the underlying factors driving changes in revenues and
profits, and improve forecasts. But the broader conclusion from this analysis is that understanding why
revenues or profits are changing is still important — or in other words, the source of the shock matters.
Unfortunately, enthusiastic but uninformed users of Data Science forecasting techniques may be totally
unaware of this proviso.
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