The Role of Nanopesticide Formulations in Agricultural Bioeconomy
DOI:
https://doi.org/10.55578/jedip.2509.007Keywords:
Nanopesticides, Bioeconomy, ManagementAbstract
The reckless use of conventional pesticide formulations leads to many problems on the environment. So, using new approach in pesticide formulation production can be reduced these harmful effects. Furthermore using this approach can be reduced the cost of pesticide production, improving the pesticide properties and increase the national income especially, in developing countries. This strategy can be called the bioeconomy. The bioeconomy expression means the use of new biological resources sustainably to obtain the food, energy and industrial goods. Nanopesticide formulations are the new trend in pesticide production that can be decreased the production cost of pesticide, decreases environmental pollution and increases the potency of pesticides against target pests. With this strategy, it is possible to use one-tenth the amount of pesticides to achieve the same effect as with the traditional quantity. Therefore, this strategy is very important for the economies of developing countries. This approach aims to achieve maximum output with minimal resources.
References
1. Birner, R. (2018). Bioeconomy concepts. In I. Lewandowski (Ed.), Bioeconomy: Shaping the transition to a sustainable biobased economy (pp. 17–38). Springer.
2. OECD. (2009). The bioeconomy to 2030: Designing a policy agenda. OECD Publishing.
3. Kołodziejczak, W. (2020). Employment and gross value added in agriculture versus other sectors of the European Union economy. Sustainability, 12(5518). https://doi.org/10.3390/su12145518
4. Kalaycı, I. (2023). Sustainable agro-bioeconomy after Covid-19: Nineteen utopian and dystopian scenarios for the world and Turkey. In C. Keswani, C. Possas, E. Koukios, & D. Viaggi (Eds.), Agricultural bioeconomy (pp. 1–27). Academic Press. https://doi.org/10.1016/B978-0-323-90569-5.00006-8
5. Diakosavvas, D., & Frezal, C. (2019). Bio-economy and the sustainability of the agriculture and food system: Opportunities and policy challenges. OECD Food, Agriculture and Fisheries Papers, 136. OECD Publishing. https://doi.org/10.1787/d0ad045d-en
6. Popp, J., Pető, K., & Nagy, J. (2013). Pesticide productivity and food security: A review. Agronomy for Sustainable Development, 33, 243–255. https://doi.org/10.1007/s13593-012-0105-x
7. Kumar, P., Choudhury, D., Dey, S. R., & Raj, A. (2025). Nanofertilizers/nanopesticides for national economy. In P. Kumar & R. C. Dubey (Eds.), Nanofertilizers for sustainable agriculture. Springer. https://doi.org/10.1007/978-3-031-78649-5_17
8. Oerke, E.-C. (2005). Crop losses to pests. Journal of Agricultural Science, 144, 31–43. https://doi.org/10.1017/S0021859605005708
9. National Research Council. (2000). The future role of pesticides in U.S. agriculture. National Academy Press.
10. Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., et al. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1, 1446. https://doi.org/10.1007/s42452-019-1485-1
11. FAO. (2018). Pesticide use data–FAOSTAT. http://www.fao.org/faostat/en/#data/RP
12. Kopf, H., Joshi, R. K., Soliva, M., & Speiser, P. (1976). Studium der mizellpolymerisation in gegenwart niedermolekularer arzneistoffe. 1. Herstellung und Isolierung der Nanopartikel, Restmonomerenbestimmung, physikalisch-chemische Daten. Pharmazeutische Industrie, 38, 281–284.
13. Hayles, J., Johnson, L., Worthley, C., & Losic, D. (2017). Nanopesticides: A review of current research and perspectives. In New pesticides and soil sensors (pp. 193–225). Academic Press.
14. Rana, L., Kumar, M., & Rajput, J. (2024). Nexus between nanotechnology and agricultural production systems: Challenges and future prospects. Discover Applied Sciences, 6, 555. https://doi.org/10.1007/s42452-024-06265-7
15. Rajput, V. D., Singh, A., Minkina, T., Rawat, S., Mandzhieva, S., et al. (2021). Nano-enabled products: Challenges and opportunities for sustainable agriculture. Plants, 10(12), 2727. https://doi.org/10.3390/plants10122727
16. National Nanotechnology Initiative. (2021). NNI budget. https://www.nano.gov/about-nni/what/funding
17. Meng, Y., Feng, Y., Bai, X., Yu, Q., Zhou, J., & Wang, J. (2025). Application of nanotechnology in agricultural sustainability: Absorption, translocation, and challenges of nanoparticles. Current Plant Biology, 42, 100492. https://doi.org/10.1016/j.cpb.2025.100492
18. Zhao, X., Cui, H., Wang, Y., Sun, C., Cui, B., & Zeng, Z. (2018). Development strategies and prospects of nano-based smart pesticide formulation. Journal of Agricultural and Food Chemistry, 66(26), 6504–6512.
19. Li, L., Xu, Z., Kah, M., Lin, D., & Filser, J. (2019). Nanopesticides: A comprehensive assessment of environmental risk is needed before widespread agricultural application. Environmental Science & Technology, 53(14), 7923–7924. https://doi.org/10.1021/acs.est.9b03146
20. Kah, M., Kookana, R. S., Gogos, A., & Bucheli, T. D. (2018). A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology, 13, 677–684. https://doi.org/10.1038/s41565-018-0131-1
21. Sabry, K. H., Salem, H. A. N., & Metwally, H. M. (2021). Development of imidacloprid and indoxacarb formulations to nanoformulations and their efficacy against Spodoptera littoralis (Boisd). Bulletin of the National Research Centre, 45(16), 1–7. https://doi.org/10.1186/s42269-020-00477-8
22. Sabry, K. H., & Hussein, M. A. (2021). Relative toxicity of some nanopesticides and their conventional formulations against the glossy clover snails, Monacha cartusiana. Journal of Biological Research, 13(1), 54–60.
23. Tian, Y., Zhang, X., Huang, Y., Tang, G., Gao, Y., et al. (2022). Amphiphilic prodrug nano-micelles of fipronil coupled with natural carboxylic acids for improving physicochemical properties and reducing the toxicities to aquatic organisms. Chemical Engineering Journal, 439, 135717. https://doi.org/10.1016/j.cej.2022.135717
24. Moradi, G. F., Hejazi, M. J., Hamishehkar, H., & Enayati, A. A. (2019). Co-encapsulation of imidacloprid and lambda-cyhalothrin using biocompatible nanocarriers: Characterization and application. Ecotoxicology and Environmental Safety, 175, 155–163. https://doi.org/10.1016/j.ecoenv.2019.02.092
25. Assalin, M. R., de Souza, D. R. C., Rosa, M. A., Duarte, R. R. M., Castanha, R. F., Vilela, E. S. D., Tasic, L., & Durán, N. (2022). Thiamethoxam used as nanopesticide for the effective management of Diaphorina citri psyllid: An environmental-friendly formulation. International Journal of Pest Management, 70(4), 801–809. https://doi.org/10.1080/09670874.2022.2042425
26. Yan, S., Cheng, W. Y., Han, Z. H., Wang, D., Yin, M. Z., et al. (2021). Nanometerization of thiamethoxam by a cationic star polymer nanocarrier efficiently enhances the contact and plant-uptake dependent stomach toxicity against green peach aphids. Pest Management Science, 77(4), 1954–1962. https://doi.org/10.1002/ps.6223
27. Ahmadpour, R., Dastjerdi, H. R., Golizadeh, A., Yangjeh, A. H., Abedi, Z., & Mahdavi, V. (2024). Nanoformulation of imidacloprid insecticide with biocompatible materials and its ecological and physiological effects on wheat green aphid, Schizaphis graminum Rondani. Journal of Asia-Pacific Entomology, 27(4), 102332. https://doi.org/10.1016/j.aspen.2024.102332
28. Xiong, H., Duan, J., Cao, W., Su, Y., Chen, H., Zhao, P., Wang, Z., Wang, J., Lu, H., Yu, K. (2025). Nanoemulsion as the pioneer carrier for future green nanopesticides. Langmuir, 41(30), 19625–19641. https://doi.org/10.1021/acs.langmuir.5c02340
29. Sekhon, B. S. (2014). Nanotechnology in agri-food production: An overview. Nanotechnology, Science and Applications, 7, 31–53. https://doi.org/10.2147/NSA.S39406
30. Pereira, A. E., Grillo, R., Mello, N. F., Rosa, A. H., & Fraceto, L. F. (2014). Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. Journal of Hazardous Materials, 268, 207–215. https://doi.org/10.1016/j.jhazmat.2014.01.025
31. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., et al. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16, 71. https://doi.org/10.1186/s12951-018-0392-8
32. Sousa, G. F. M., Gomes, D. G., Campos, E. V. R., Oliveira, J. L., Fraceto, L. F., et al. (2018). Post-emergence herbicidal activity of nanoatrazine against susceptible weeds. Frontiers in Environmental Science, 6, 12. https://doi.org/10.3389/fenvs.2018.00012
33. Munhoz-Garcia, G. V., Takeshita, V., de Oliveira, J. L., Dalla Vecchia, B., Nalin, D., Pinácio, C. W., Oliveira, A. L. C., Cintra Cardoso, B., Tornisielo, V. L., & Fraceto, L. F. (2025). Nanobased natural polymers as a carrier system for glyphosate: An interesting approach aimed at sustainable agriculture. Journal of Agricultural and Food Chemistry, 73(2), 1097–1111. https://doi.org/10.1021/acs.jafc.4c08328
34. Iyarin, T. M. E., Aravind Kumar, B. N., Babu, R., Nirmalnath, P. J., Hebsur, N. S., Halli, H. M., Govindasamy, P., Senthamil, E., Sannagoudar, M. S., & Palsaniya, D. R. (2024). Nanocomposite based slow release atrazine effectively controlled Striga asiatica incidence, and enhanced sugarcane yield. Scientific Reports, 14(1), 30821. https://doi.org/10.1038/s41598-024-81117-3
35. Muhammad, A., Isra, N., Shahbaz, T. S., Nasir, A. R., & Ehsan, H., et al. (2020). Nanoparticles: A safe way towards fungal diseases. Archives of Phytopathology and Plant Protection, 53, 781–792.
36. Worrall, E. A., Hamid, A., Mody, K. T., Mitter, N., & Pappu, H. R. (2018). Nanotechnology for plant disease management. Agronomy, 8(285). https://doi.org/10.3390/agronomy8120285
37. Pimentel, D. (2009). Pesticide and pest control. In P. Peshin & A. K. Dhawan (Eds.), Integrated pest management: Innovation-development process (pp. 83–87).
38. Anastasios, M., Nektarios, K., & Constantinos, C. (2019, April 7–12). Nano-fungicides against plant pathogens: Copper, silver and zinc NPs. In 21st EGU General Assembly, EGU2019 (p. 3081). Vienna, Austria.
39. Cota-Arriola, O., Cortez-Rocha, M., Burgos-Hernández, O. A., Ezquerra-Brauer, J. M., & Plascencia-Jatomea, M. (2013). Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: Development of new strategies for microbial control in agriculture. Journal of the Science of Food and Agriculture, 93(7), 1525–1536. https://doi.org/10.1002/jsfa.6060
40. Kashyap, P. L., Xiang, X., & Heiden, P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77, 36–51. https://doi.org/10.1016/j.ijbiomac.2015.02.039
41. Kew, C. L., Liao, Y. T., & Lin, C. H. (2021). MSS2 maintains mitochondrial function and is required for chitosan resistance, invasive growth, biofilm formation and virulence in Candida albicans. Virulence, 12(1), 281–297. https://doi.org/10.1080/21505594.2020.1870082
42. Liu, Y., Laks, P., & Heiden, P. (2002). Controlled release of biocides in solid wood. II. Efficacy against Trametes versicolor and Gloeophyllum trabeum wood decay fungi. Journal of Applied Polymer Science, 86(3), 608–614. https://doi.org/10.1002/app.10897
43. Ilk, S., Saglam, N., & Özgen, M. (2017). Kaempferol loaded lecithin/chitosan nanoparticles: Preparation, characterization, and their potential applications as a sustainable antifungal agent. Artificial Cells, Nanomedicine, and Biotechnology, 45(5), 907–916. https://doi.org/10.1080/21691401.2016.1192040
44. Tippannanavar, M., Verma, A., Kumar, R., Gogoi, R., Kundu, A., & Patanjali, N. (2020). Preparation of nanofungicides based on imidazole drugs and their antifungal evaluation. Journal of Agricultural and Food Chemistry, 68(16), 4566–4578. https://doi.org/10.1021/acs.jafc.9b06387
45. Afrasiabi, Z., Popham, H. J., Stanley, D., Suresh, D., Finley, K., et al. (2016). Dietary silver nanoparticles reduce fitness in a beneficial, but not pest, insect species. Archives of Insect Biochemistry and Physiology, 93(4), 190–201. https://doi.org/10.1002/arch.21351
46. Alif, S. A., & Thangapandiyan, S. (2019). Comparative bioassay of silver nanoparticles and malathion on infestation of red flour beetle, Tribolium castaneum. Journal of Basic and Applied Zoology, 80, 55. https://doi.org/10.1186/s41936-019-0124-0
47. Parthiban, E., Ramachandran, M., Jayakumar, M., & Ramanibai, R. (2019). Biocompatible green synthesized silver nanoparticles impact on insecticides resistant developing enzymes of dengue transmitted mosquito vector. SN Applied Sciences, 1, 1282. https://doi.org/10.1007/s42452-019-1311-9
48. Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Živčák, M., Ghorbanpour, M., El-Sheery, N. I., & Brestic, M. (2019). Application of silicon nanoparticles in agriculture. 3 Biotech, 9, 90. https://doi.org/10.1007/s13205-019-1626-7
49. Barik, T. K., Sahu, B., & Swain, V. (2008). Nanosilica: From medicine to pest control. Parasitology Research, 103(2), 253–258. https://doi.org/10.1007/s00436-008-0975-7
50. Smith, B. C. (1969). Effects of silica on the survival of Coleomegilla maculata lengi (Coleoptera: Coccinellidae) and Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Canadian Entomologist, 101(4), 460–462. https://doi.org/10.4039/Ent101460-5
51. Thabet, A. F., Boraei, H. A., Galal, O. A., El-Samahy, M. F. M., Mousa, K. M., Zhang, Y. Z., Tuda, M., Helmy, E. A., Wen, J., & Nozaki, T. (2021). Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Scientific Reports, 11, 14484. https://doi.org/10.1038/s41598-021-93518-9
52. Ziaee, M., & Ganji, Z. (2016). Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val. Journal of Plant Protection Research, 56(3), 250–256. https://doi.org/10.1515/jppr-2016-0037
53. Belhamel, C., Makhlouf, L. B., Bedini, S., Tani, C., Lombardi, T., Giannotti, P., Madani, K., Belhamel, K., & Conti, B. (2020). Nanostructured alumina as seed protectant against three stored-product insect pests. Journal of Stored Products Research, 87, 101607. https://doi.org/10.1016/j.jspr.2020.101607
54. Stadler, T., Buteler, M., & Valdez, S. R. (2017). Particulate nanoinsecticides: A new concept in insect pest management. In G. Begum (Ed.), Insecticides – Agriculture and toxicology. IntechOpen. https://www.intechopen.com/chapters/58221
55. Stadler, T., Buteler, M., & Weaver, D. K. (2010). Novel use of nanostructured alumina as an insecticide. Pest Management Science, 66(6), 577–579. https://doi.org/10.1002/ps.1915
56. Abigail, E. A., & Chidambaram, R. (2017). Nanotechnology in herbicide resistance. In M. S. Seehra (Ed.), Nanostructured materials – Fabrication to applications. IntechOpen. https://www.intechopen.com/chapters/55009
57. Ghazali, S. A. I. S. M., Sarijo, S. H., & Hussein, M. Z. (2021). New synthesis of binate herbicide-interleaved anionic clay material: Synthesis, characterization and simultaneous controlled-release properties. Journal of Porous Materials, 28, 495–505. https://doi.org/10.1007/s10934-020-01011-x
58. Páez, M. R., Ochoa-Muñoz, Y., & Rodriguez-Páez, J. E. (2019). Efficient removal of a glyphosate-based herbicide from water using ZnO nanoparticles (ZnO-NPs). Biocatalysis and Agricultural Biotechnology, 22, 101434. https://doi.org/10.1016/j.bcab.2019.101434
59. Jiang, T., Huang, J., Peng, J., Wang, Y., & Du, L. (2023). Characterization of silver nanoparticles synthesized by the aqueous extract of Zanthoxylum nitidum and its herbicidal activity against Bidens pilosa L. Nanomaterials, 13(10), 1637. https://doi.org/10.3390/nano13101637
60. Tryfon, P., Kamou, N. N., Mourdikoudis, S., Karamanoli, K., Menkissoglu-Spiroudi, U., Dendrinou-Samara, C. (2021). CuZn and ZnO nanoflowers as nano-fungicides against Botrytis cinerea and Sclerotinia sclerotiorum: Phytoprotection, translocation, and impact after foliar application. Materials, 14(24), 7600. https://doi.org/10.3390/ma14247600
61. Iavicoli, I., Leso, V., Beezhold, D., & Shvedova, A. A. (2017). Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology, 329, 96–111. https://doi.org/10.1016/j.taap.2017.05.025
62. Rai, M., Ingle, A. P., Pandit, R., Paralikar, P., Shende, S., Gupta, I., Biswas, J. K., & da Silva, S. S. (2018). Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnology Reviews, 7(4), 303–315. https://doi.org/10.1111/j.1365-3040.2009.01952.x
63. Ntasiou, P., Kaldeli, K. A., Karamanidou, T., Vlachou, A., Tziros, G. T., Tsouknidas, A., & Karaoglanidis, G. S. (2021). Synthesis and characterization of novel copper nanoparticles for the control of leaf spot and anthracnose diseases of olive. Nanomaterials, 11(7), 1667. https://doi.org/10.3390/nano11071667
64. Pariona, N., Mtz-Enriquez, A. I., Rangel, D. S., Carrión, G., Delgado, F. P., & Saito, G. R. (2019). Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Advances, 9(32), 18835–18843. https://doi.org/10.1039/C9RA03110C
65. Viet, P. V., Nguyen, H. T., Cao, T. M., & Hieu, L. V. (2016). Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. Journal of Nanomaterials, 2016, 1957612. https://doi.org/10.1155/2016/1957612
66. Oussou-Azo, A. F., Nakama, T., Nakamura, M., Futagami, T., & Vestergaard, M. C. M. (2020). Antifungal potential of nanostructured crystalline copper and its oxide forms. Nanomaterials, 10(5), 1003. https://doi.org/10.3390/nano10051003
67. Sun, Q., Li, J., & Le, T. (2018). Zinc oxide nanoparticle as a novel class of antifungal agents: Current advances and future perspectives. Journal of Agricultural and Food Chemistry, 66(43), 11209–11220. https://doi.org/10.1021/acs.jafc.8b03210
68. He, L., Liu, Y., Mustapha, A., & Lin, M. (2010). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215. https://doi.org/10.1016/j.micres.2010.03.003
69. Mosquera-Sanchez, L. P., Arciniegas-Grijalba, P. A., Patino-Portela, M. C., Guerra-Sierra, B. E., Muñoz-Florez, J. E., & Rodríguez-Paez, J. E. (2020). Antifungal effect of zinc oxide nanoparticles (ZnO-NPs) on Colletotrichum sp., causal agent of anthracnose in coffee crops. Biocatalysis and Agricultural Biotechnology, 25, 101579.
70. Chen, J., Wu, L., Lu, M., Lu, S., Li, Z., & Ding, W. (2020). Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Frontiers in Microbiology, 11, 365. https://doi.org/10.3389/fmicb.2020.00365
71. Kong, F., Wang, J., Han, R., Ji, S., Yue, J., Wang, Y., Ma, L. (2020). Antifungal activity of magnesium oxide nanoparticles: Effect on the growth and key virulence factors of Candida albicans. Mycopathologia, 185(3), 485–494. https://doi.org/10.1007/s11046-020-00446-9
72. Liao, J., Yuan, Z., Wang, X., Chen, T., Qian, K., Cui, Y., Rong, A., Zheng, C., Liu, Y., Wang, D., & Pan, L. (2024). Magnesium oxide nanoparticles reduce clubroot by regulating plant defense response and rhizosphere microbial community of tumorous stem mustard (Brassica juncea var. tumida). Frontiers in Microbiology, 15, 1370427. https://doi.org/10.3389/fmicb.2024.1370427
73. Lazcano-Ramírez, H. G., Garza-García, J. J. O., Hernández-Díaz, J. A., León-Morales, J. M., Macías-Sandoval, A. S., & García-Morales, S. (2023). Antifungal activity of selenium nanoparticles obtained by plant-mediated synthesis. Antibiotics, 12(1), 115. https://doi.org/10.3390/antibiotics12010115
74. Desouky, M. M., Abou-Saleh, R. H., Moussa, T. A. A., & Fahmy, H. M. (2025). Nano-chitosan-coated, green-synthesized selenium nanoparticles as a novel antifungal agent against Sclerotinia sclerotiorum: In vitro study. Scientific Reports, 15, 1004. https://doi.org/10.1038/s41598-024-79574-x
75. Vasylchenko, A., & Derevianko, S. (2021). Antifungal activity of a composition of selenium and iodine nanoparticles. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 69(4), 491–500. https://doi.org/10.11118/actaun.2021.044
Downloads
Published
Data Availability Statement
Data are available on reasonable request.
Issue
Section
License
Copyright (c) 2025 Al-kazafy Hassan Sabry, Zakaria Abdelhalim Attia (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.