

ARTICLE

Innovation Pathways and Organizational Adaptation Mechanism of Scientific Research Services in Digital-Intelligence Transformation—A Case Study of AiScholar

He Wan^{1,*}, Bin Xie¹

¹ *Guangdong University of Finance & Economics, GuangZhou, China*

*Corresponding author. Email: wanhe@gdufe.edu.cn

Received: 21 November 2025, Accepted: 25 November 2025, Published: 28 November 2025

Abstract

Amidst the deep fusion of global digitalization and intelligentization, the scientific research service (SRS) sector is undergoing a profound paradigm shift. Based on the socio-technical systems (STS) theory, a longitudinal single-case study on AiScholar, a one-stop SRS platform, is conducted here to trace its decade-long digital-intelligence transformation journey. It is revealed that AiScholar's evolution has progressed through three distinct but sequential stages: informationization-based foundation-laying, digitalization-driven development, and intelligentization-led advancement, each characterized by its unique technological foci, organizational challenges, and value creation logics. It is also found that the successful transformation of AiScholar relies not only on its continuous improvement of technological strength, but, more critically, on its dynamic adaptation between its technological subsystem and social subsystem (involving organizational architecture, cultural cognition, and the external environment). Through contextualized "consensus-building" governance, data-driven organizational culture reshaping, and "internal-external" dual-loop synergy, AiScholar has navigated the inherent tensions during its decade-long journey of transformation. Finally, an integrated model of phased progression and multi-dimensional synergy is constructed to provide a theoretical framework and managerial insights for similar enterprises to navigate their journey of digital-intelligence transformation.

Keywords: Digital-Intelligence Transformation; Scientific Research Service (SRS); Innovation Pathway; Socio-Technical Systems Theory; Organizational Reform

1. INTRODUCTION

1.1. Research background and significance

The convergence of breakthroughs in frontier technologies, such as big data, artificial intelligence, and blockchain, is profoundly reshaping the mechanisms of knowledge generation, dissemination, and transformation within the scientific research ecosystem. Against this backdrop, traditional models of scientific research service (SRS), plagued by inefficiency, lack of precision, and insufficient agility, are struggling to meet the growing demand for high-quality and intelligent services among researchers. AiScholar, one of the first SRS platforms in China that embarked on digital-intelligence transformation, offers a valuable case study to understand this complex process throughout its decade-long journey of development. This study systematically analyzes the evolutionary pathway and adaptation mechanisms of AiScholar to offer insights and practical recommendations for the SRS industry and the broader knowledge-intensive service sector.

1.2. Literature Review and Research Framework

The socio-technical systems (STS) theory originated from the classical research by Trist and Bamforth on organizational innovation in the British coal mining industry, and through over 70 years of theoretical evolution, it has matured into a framework for analyzing the integration of organizational change and technological innovation [1]. The central idea of this theory is that any organizational

system is composed of two interdependent subsystems: the technical subsystem (tools, technologies, and equipment) and the social subsystem (personnel, organizational structure, culture, and skills); the optimization of the two subsystems must be realized concurrently rather than in isolation; the overall effectiveness of the system is maximized only through the joint optimization of the two subsystems.

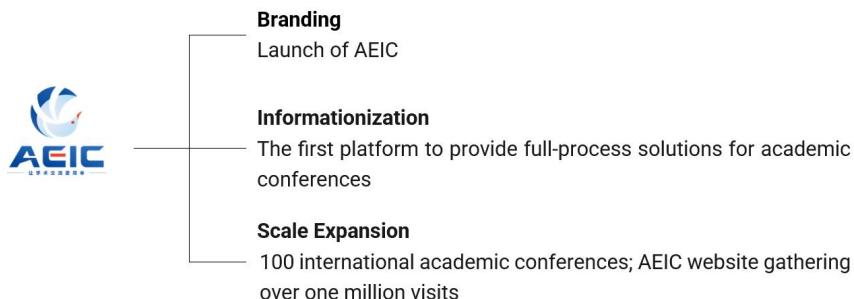
In the field of digital transformation research, the STS theory, due to its emphasis on the co-evolution of technical and social subsystems, provides a strongly explanatory lens and has gained popularity in transformation practices in industries like manufacturing and finance. However, reports on the internal mechanisms and pathways of digital-intelligence transformation in the knowledge-intensive services industry, particularly in the SRS industry, are rare. Existing studies in this regard mainly focused on large enterprises or standardized services, but paid scant attention to new platforms like AiScholar that have developed rapidly through sustained innovation after initially targeting niche markets. To fill the research gap, this study employs the STS theory to investigate the digital-intelligence transformation pathways and organizational adaptation mechanisms in the SRS industry [2].

1.3. Research Design and Methodology

Per the principle of theoretical sampling, this study selects AiScholar, an SRS provider in China, for a longitudinal single-case study. Through the triangulation of data obtained from multiple sources—including internal corporate archives, public reports, in-depth interviews, and participatory observation—this study identifies the key milestones, strategic decisions, and organizational adjustments throughout AiScholar’s transformation to distill propositions and models of theoretical significance [3,4].

1.4. Data Collection and Analysis

The data used in this study were collected in two phases: The first phase involved the collection of secondary data about AiScholar, including public reports, industry analyses, and internal files of the platform, which were thoroughly examined to extract useful information; The second phase involved field research conducted at multiple time points, participatory observation, and in-depth interviews with senior executives to update the secondary data; meanwhile, first-hand data were supplemented to improve the data triangulation from different sources and ensure validity of the research.


2. CASE STUDY: THREE-STAGE TRANSFORMATION OF AISCHOLAR

2.1. Phase I (2014-2018): Informatization-based Foundation-laying—Addressing Efficiency Pain Points Through Process Digitization

Around 2014, China’s SRS industry, though in a stage of rapid growth, suffered from a low degree of standardization: Core SRS modules, such as organization of academic conferences and management of journal submissions, relied heavily on manual processes, resulting in low efficiency and a high error rate. Concurrently, there was an increasing need for “process transparency and data traceability” among higher education institutions (HEIs) and publishers. However, most small and medium-sized enterprises (SMEs) in the SRS industry could not develop systematic tools, creating a large niche market [5]. AiScholar’s parent company, Guangzhou KEO Information Technology Co., Ltd. (hereinafter referred to as KEO), astutely identified this market opportunity. Adopting the strategic positioning of a “connector in scientific research,” KEO pioneered “informatization” and launched the Academic Exchange Information Center (AEIC) in 2015, aiming to provide full-process informationized solutions for academic conferences. AEIC digitized and established preliminary standards for procedures in academic conference organization, including registration management, agenda generation, and notification distribution, providing more efficient alternatives to traditional manual operations. Meanwhile, the company established a global expert network to facilitate the connections of academic resources between HEIs and research institutions. Figure 1 shows the first phase of the transformation of AiScholar.

This phase of transformation was characterized by a pain point-oriented approach. Using mature information technology, AEIC digitized its core business operations, which substantially improved its service efficiency and quality and allowed the company to win a large user base along with a high

reputation. By 2018, it had served over 100 international conferences, covering more than 30 provinces and municipalities across China, and provided services to over 100,000 research users¹. However, as the company's scale expanded, the limitations of the informatization model became increasingly salient: System upgrades remained mere stacking of functional modules, and restructuring of the underlying processes was left unaddressed; The lack of standardized data protocols and continued reliance on experience-based decision-making trapped the operational team in a “project-driven” reactive mode, failing to realize effective consolidation of data value.

Figure 1. First Phase of Transformation of AiScholar (2014-2018)²

Meanwhile, shifts in the external market created dual pressure. First, university clients were looking for more advanced features, such as online agenda generation, synchronized digital certificates, and the integration of conference data with research performance metrics. Second, domestic competitors offering “conference service SaaS systems” emerged, capturing market share with low-cost, standardized products and continuously reshaping client expectations for academic conference solutions. Internationally, platforms in more developed countries had already introduced comprehensive, end-to-end academic conference management systems that integrated functions from submission and peer review to automated agenda generation, registration management, and feedback collection. The confluence of these internal and external factors ultimately propelled AiScholar into a new phase of digital transformation [6].

2.2. Phase II (2019–2023): Digitalization-Driven Transformation — Platform-Oriented Restructuring for Synergy and Efficiency Enhancement

To address the dual challenges of internal operational inefficiencies and external competitive pressures, KEO gradually defined its strategic objective: to shift from a labor-driven model to a platform-based, data-driven operational approach for structural transformation and breakthrough. In August 2019, AiScholar was officially launched, upgrading the service model from “point-to-point support” to a “systematic service architecture” (as shown in Figure 2). Since its inception, the AiScholar platform has made three key breakthroughs: first, it integrated conference management and journal recommendation systems, which enabled automated data flow of submissions and avoided information silos; second, it decomposed conference operation processes into standardized modules to allow flexible configurations for diverse application scenarios; third, it established an internal operational collaboration platform, which improved project information transparency and made cross-departmental workflows explicit.

On its way towards digital-intelligence transformation, AiScholar turned to internal closed-door workshops, company-wide surveys, and a range of other measures to build consensus around core strategic propositions, such as “translating customer relationships into platform user loyalty”, which culminated in the formulation of its “Four Online” strategic objectives. During the early stage post its launch of the AiScholar platform, KEO established a multi-dimensional adaptation mechanism involving a process resilience mechanism, a service experience scoring system, and an initial operation observation period, which reflected its philosophy of transformation grounded in agile iteration and user centricity. These measures facilitated a fundamental shift in its operating model from “people-driven processes” to “process-driven operations” [6].

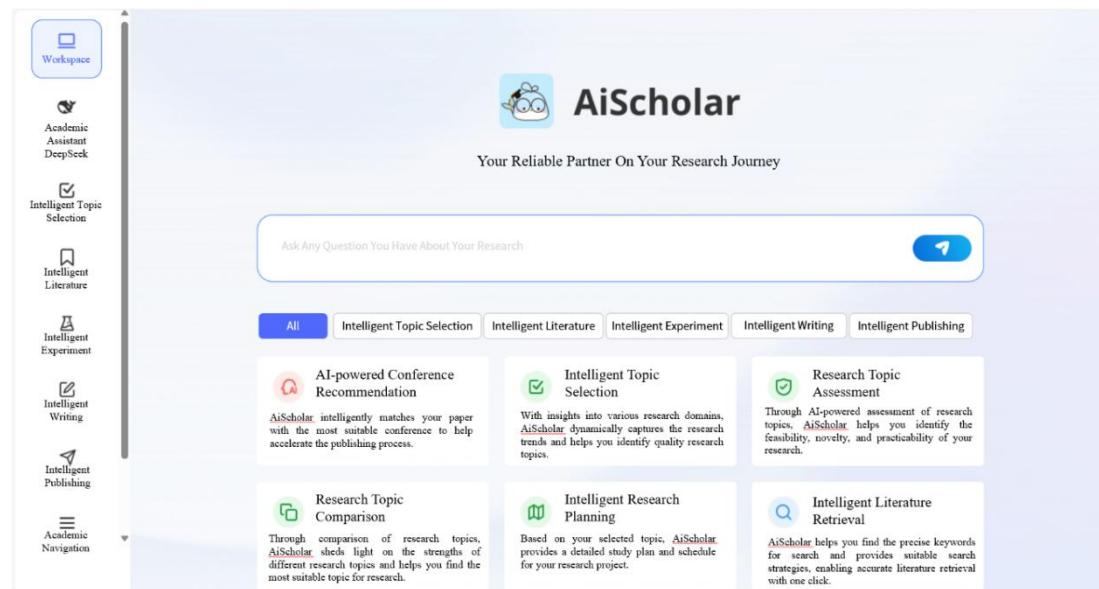
¹ Source: Official releases on AiScholar’s official website.

² Source: Official briefing materials of AiScholar.

By 2023, AiScholar had achieved a system stability rate of 97% and had successively launched innovative features such as the “AI-Powered Peer Review System,” the “Big-Data Intelligent Journal Matching System,” and “Research Writing Assistant Tools.” Its service model evolved from “resource integration” to “value creation,” garnering increasing market recognition. This was evidenced by endorsements from international organizations such as COPE, ACSE, and OASPA. Furthermore, AiScholar was designated as a “Hidden Champion” enterprise in Guangzhou, included in the List of Data Element Registry Enterprises in Guangdong, and recognized as an outstanding case of digital industrialization and industrial digitalization among private enterprises in Guangdong. These honors solidified the company’s position as a benchmark for digital transformation within the SRS sector³.

Figure 2. Second Phase of Transformation of AiScholar (2019-2024)⁴

2.3. Phase III (2024 onwards): Intelligentization-led Advancement—AI-empowered Ecosystem Value Creation


Since 2024, large language models (LLMs) like ChatGPT have shifted the role of AI from a “peripheral assistant” to a “core driver,” redirecting the focus of competition within the SRS industry from “technical tool competition” to “deep integration of AI with research scenarios” [7]. Centered around its “AI Researcher Workspace,” AiScholar has rolled out new features, including data aggregation, intelligent analytics, smart recommendations, and collaborative innovation. Meanwhile, by constructing a research knowledge graph and detailed researcher profiles, and embedding end-to-end tools, including intelligent journal recommendation, AI-assisted peer review, and AI-powered topic diagnosis, AiScholar has established a comprehensive intelligent technological support system. This system spans the entire research lifecycle, from “topic selection, writing, and peer review to publication, communication of research results, and translation of research findings to practical applications.” Figure 3 displays AiScholar’s AI Researcher Workspace.

To resolve the challenges posed by AI to organizational revolution, the parent company of AiScholar established an academic committee, enlisting renowned academicians and experts across research domains to provide theoretical guidance and technical validation. It also partnered with HEIs, such as South China University of Technology and Chengdu University of Information Technology, to establish industry-university joint laboratories. Through industry-university-research collaborations, AiScholar has driven the optimization and industrial application of its AI algorithms, advancing its strategic repositioning from a “process and tool platform” to a “leader in the SRS innovation ecosystem.” To address internal cognitive conflicts and divergent perspectives, such as those surrounding the “coordination mechanism for algorithmic rights and interests” and the “irreplaceability of human-AI collaboration”, AiScholar leveraged empirical data from sources, including performance validation of its AI-powered peer review system and case studies on intelligent journal recommendation, to clarify the functional boundaries between AI and human roles. It also launched a

³ Source: Releases on the official website of AiScholar.

⁴ Source: Official briefing materials of AiScholar.

“Pilot Program for AI-Academic Collaboration,” establishing a dual-track mechanism of “AI Initial Assessment + Human Recheck” to test this division of labor in real-world projects. Pilot results demonstrated the edge of AI over humans in standardized tasks, but also confirmed the irreplaceable role of human expertise in building client trust, managing complex partnership negotiations, and responding to non-standardized requests. This human-AI collaboration model provides the SRS industry with a replicable pathway for its intelligent transformation [6].

Figure 3. AiScholar’s AI Researcher Workspace⁵

Data from 2024 demonstrates that AiScholar’s AI-powered intelligent service has allowed the company to achieve more: the platform has cumulatively supported over 5,200 international conferences, served more than three million researchers, established collaborations with over 3,000 universities and research institutions globally, and maintained a network of more than 50,000 active expert partners. In this phase of transformation, AiScholar also quickened its pace to go global. In April 2025, it entered a strategic partnership with Universiti Teknologi Malaysia for partnerships in R&D and application programs across domains like artificial intelligence (AI), data analytics, digital management technologies, and academic conference services. Meanwhile, with the inauguration of its “AiScholar Malaysia Operational Center”, the company established a regional hub to reach HEIs and research institutions across Southeast Asia. This move allowed the company to reach a broader market and build a practical platform for it to navigate the cross-cultural complexities inherent in global scientific collaboration⁶.

3. DISCUSSION & MANAGEMENT IMPLICATIONS

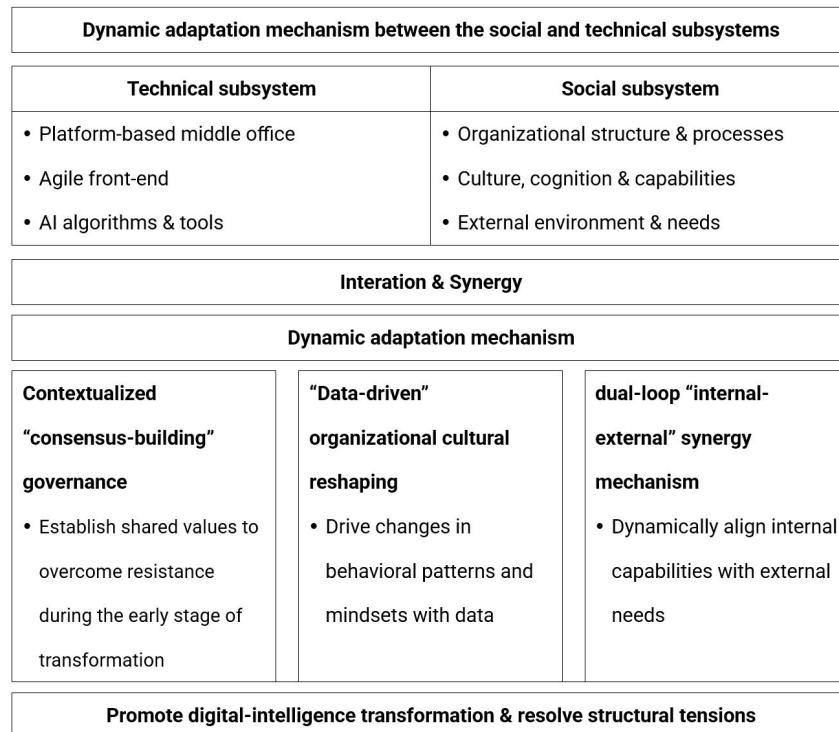
3.1. Evolution Mechanism of Transformation Stages: From Point-focused Breakthroughs to Ecosystem Empowerment

AiScholar’s transformation journey exhibits a clear, three-phase evolutionary logic, characterized by a progressive pathway from “point-focused breakthroughs” to “systemic restructuring” and finally to “ecosystem empowerment”, as shown in Table 1. In the informatization-based foundation-laying phase, AiScholar digitalized its business processes to realize standardization of services and improve service efficiency. In the digitalization-driven transformation phase, AiScholar, through its platform-based architecture, realized data integration and organizational synergy, and completed systemic restructuring across all of its modules from tool applications to operational models. In the intelligentization-led advancement phase, the platform constructed an open ecosystem with AI technologies and realized a fundamental shift in the mode of value creation.

⁵ Source: Releases on AiScholar’s official website.

⁶ Source: Releases on AiScholar’s official website.

Table 1. Comparison of the three phases of transformation of AiScholar


Dimension	Phase I: Informatization-based Foundation-Laying (2014-2018)	Phase II: Digitalization- driven Transformation (2019-2023)	Phase III: Intelligentization-led Advancement (2024 onwards)
Transformation Paradigm	<ul style="list-style-type: none"> Targeted breakthroughs Process digitalization 	<ul style="list-style-type: none"> System restructuring Platform-based operation 	<ul style="list-style-type: none"> Ecosystem enablement Value co-creation
Strategic Focus & Key Initiatives	<p>Pain-point Focus & Efficiency-first Priority</p> <ul style="list-style-type: none"> End-to-end conference digitalization Standard operating procedure (SOP) establishment Academic resource connectivity 	<p>Platform Empowerment & Synergy and Efficiency Improvement</p> <ul style="list-style-type: none"> Data silo integration & platform construction Modular & standardized business processes Internal collaboration mechanism configuration 	<p>AI-Driven Operations & Ecosystem Development</p> <ul style="list-style-type: none"> Launch of “AI Researcher Workspace” Knowledge graph & user profile development Industry-university-research joint labs
Technical Subsystem Evolution	<p>Technical Focus: Foundational IT technologies</p> <p>System Features: Siloed applications & functional add-ons</p>	<p>Technical Focus: Platform architecture & data middle-platform</p> <p>System Features: Integrated system & data interconnectivity</p>	<p>Technical Focus: AI large models and algorithms</p> <p>System Features: Intelligent, ecosystem-oriented & open architecture</p>
Social Subsystem Challenges & Adaptation	<p>Organizational Challenges: Experience-based decision-making, passive responsiveness, and inconsistent data standards</p> <p>Adaptation Mechanisms: Process standardization & preliminary online collaboration</p>	<p>Organizational Challenges: Cross-departmental silos & process change resistance</p> <p>Adaptation Mechanisms: “Four Online” strategy, agile iteration mechanisms, service rating system</p>	<p>Organizational Challenges: Human-AI collaboration boundaries, algorithmic ethics & cross-cultural cooperation</p> <p>Adaptation Mechanisms: “AI+human” dual-track system, academic advisory board, university-industry partnership</p>
Key Milestones	<ul style="list-style-type: none"> Over 100 international conferences Over 100,000 researchers 	<ul style="list-style-type: none"> 97% platform stability Endorsement by organizations, including COPE, ACSE, etc. Included in the list of benchmark case study enterprises of digitalization 	<ul style="list-style-type: none"> Over 5300 international conferences Over 3 million researchers Over 3000 partner institutions globally Malaysia Operations Center

This progression demonstrates that the digital-intelligence transformation of research services is not merely the stacking of technologies but rather the outcome of the co-evolution of three dimensions: technological architecture, organizational capabilities, and value proposition. The success of each phase accumulated the necessary technical foundations, data resources, and organizational consensus for the subsequent phase of transformation, forming a self-reinforcing, upward spiral of transformation [8-11].

3.2. Core Mechanism of Successful Transformation: Dynamic Adaptation of Socio-Technical Subsystems

Analyses based on the sociotechnical systems (STS) theory reveal that AiScholar’s successful transformation stemmed from its synergistic governance of the social and technical subsystems. As

illustrated in Figure 4, on the technical dimension, the company realized continuous technological updates through a “platform-based middle office + agile front-end” architecture; on the organizational dimension, institutional innovations, such as the process resilience mechanism, differentiated empowerment strategies, and the human-AI collaboration pilot, effectively mitigated organizational resistance during the transformation. Notably, through contextualized “consensus-building” governance, AiScholar fostered a unified cognitive value framework in the early stage of digital-intelligence transformation. It also realized a systematic shift in organizational behavior through “data-driven” cultural reshaping. Meanwhile, by establishing a dual-loop “internal-external” synergy mechanism, the company dynamically aligned its internal capabilities with external needs and realized virtuous interactions between technical empowerment and organizational shifts [12].

Figure 4. Dynamic adaptation mechanism between social and technical subsystems

3.3. Pathways to Transformation Governance: A Phase-Adaptive and Dynamic Adjustment Perspective

First, enterprises need to adopt governance models that are aligned with the specific phase of transformation. During the informatization phase, a centralized decision-making mechanism can be adopted to ensure execution efficiency. In the digitalization phase, however, a more decentralized governance structure becomes necessary to foster organizational vitality. As the transformation progresses to the intelligentization phase, a networked governance mechanism is required to realize ecosystem-oriented development. Second, corporate managers need to capture the “rhythm” of the transformation. The AiScholar case demonstrates that successful transformation relies on refraining from rushing the process and capturing critical opportunities. Enterprises need to identify their unique rhythm of transformation by dynamically aligning their internal capabilities with external environmental changes. Third, the ethical and social issues involved in the transformation also deserve attention. With the deep penetration of emerging technologies like AI in services, robust ethical governance frameworks are required to ensure that technological advancement progresses in parallel with social value. This commitment is fundamental to the sustainability of enterprises and reflects the corporate social responsibility (CSR) [13,14].

4. CONCLUSIONS AND PROSPECTS

4.1. Conclusions

Based on the socio-technical systems (STS) theory, a longitudinal case study on AiScholar is performed to identify the patterns and implementation pathways of digital-intelligence transformation in the scientific research service (SRS) industry. The main findings are as follows:

First, this study identifies and validates a three-phase evolutionary model of digital-intelligence transformation. It is found that successful transformation entails progression through three sequential stages: informatization-based foundation-laying, digitalization-driven development, and intelligentization-led advancement, each characterized by its respective technological focuses, organizational challenges, and value creation models. This finding not only corroborates the technology adoption lifecycle theory but also provides insights into the phase-specific characteristics and evolutionary logic of digital-intelligence transformation within a particular industry context.

Second, the study uncovers the key mechanism of dynamic adaptation between the social and technical subsystems. AiScholar's successful transformation was driven by its construction of a synergistic mechanism integrating four dimensions: technological strength, organizational structure, cultural cognition, and the external environment. Through innovative practices, such as contextualized “consensus-building” governance, “data-driven” organizational culture reshaping, and “internal-external” dual-loop synergy, it resolved the structural tensions inherent in the transformation process. This finding extends the application of the STS theory to research on digital-intelligence transformation and highlights the critical role of dynamic adaptation capability.

Finally, this study proposes an integrated transformation framework of “phased progression and multi-dimensional synergy.” This framework not only reveals the intrinsic connection between phase-wise evolution and dimensional synergy but also provides systematic theoretical guidance for enterprises to draft their transformation pathways and identify key risks within. It is found that successful transformation depends not merely on technological investment but, more critically, on the organization's ability to achieve the continuous alignment and co-evolution of its technological architecture, organizational capabilities, and cultural cognition.

4.2. Theoretical Contribution and Practical Implications

The research here is of both theoretical and practical significance: theoretically, it unveils the mechanism underlying the digital-intelligence transformation of enterprises in the SRS sector and enriches relevant research; practically, it provides an actionable transformation framework and implementation guidelines that will improve the success rate of transformation. These research findings not only offer direct guidance for enterprises in the SRS industry but also provide a valuable reference for enterprises in other knowledge-intensive service industries that are pursuing digital-intelligence transformation.

4.3. Limitations and Future Research

This study has several limitations. First, the present work is a single-case study. Though AiScholar's transformation journey is illustrative and representative, the generalizability, or external validity, of the findings requires further testing and comparison through cases involving organizations of different scales and business models (e.g., traditional publishers, associations and societies, and small-to-medium service providers). Second, the present work relies primarily on publicly available secondary data, which suffers from constraints in terms of depth and breadth. Future studies could employ methods such as in-depth interviews and participatory observation to gather richer and more in-depth primary data. To address these limitations, it is necessary to, in future research, adopt multi-case comparative studies and a mixed-methods approach. Furthermore, emerging issues, such as human-AI collaboration and algorithmic governance, can be discussed to provide more cutting-edge guidance for the digital-intelligence transformation of enterprises in the SRS industry.

Funding Statement: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Contribution: All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by He Wan, and Bin Xie. The first draft of the manuscript was written by He Wan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Informed Consent Statement: Informed consent was obtained from all individual participants included in the study.

Data Availability Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflict of Interest Statement: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Declaration of AI Tool Usage: The author(s) declare that no generative artificial intelligence (AI) tools have been used to generate content, ideas, or theories in this manuscript, and no AI or AI-assisted technologies have been listed as an author or co-author of the manuscript in question. However, in the preparation of this manuscript, the authors utilized DeepSeek for text translation and linguistic polishing. The AI-generated output was rigorously reviewed, edited, and refined by the authors, who take full responsibility for the accuracy, validity, and originality of the manuscript content.

REFERENCES

1. Thomas, A. (2024). Digitally transforming the organization through knowledge management: A socio-technical system (STS) perspective. *European Journal of Innovation Management*, 27(9), 437–460. <https://doi.org/10.1108/EJIM-02-2024-01141>
2. Schmitt, U. (2022). Informing at the crossroads of design science research, academic entrepreneurship, and digital transformation: A platform ecosystem roadmap. *Informing Science: The International Journal of an Emerging Transdiscipline*, 25, 143–160. <https://doi.org/10.28945/4944>
3. Yin, R. K. (2018). *Case study research and applications: Design and methods* (6th ed.). SAGE Publications. <https://doi.org/10.4135/9781529711747>
4. Paasivaara, M., Lassenius, C., & Männistö, T. (2018). Large-scale agile transformation at Ericsson: A case study. *Empirical Software Engineering*, 23(1), 206–255. <https://doi.org/10.1007/s10664-017-9553-3>
5. Zhang, J., Ni, X., & Fan, J. (2019, June). Research and development of intelligent integrated conference service platform. *Journal of Physics: Conference Series*, 1237(4), 042070. IOP Publishing.
6. Wan, H., Wang, B., Song, X. Q., & Duan, D. (2025). Actors in digital-intelligent transition: Leadership choices of AiScholar. *China Management Case Sharing Center (CMCC)*. <http://www.cmcc-dlut.cn/Cases/Detail/9897>
7. Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z., ... & Zitnik, M. (2023). Scientific discovery in the age of artificial intelligence. *Nature*, 620(7972), 47–60.
8. Warner, K. S. R., & Wäger, M. (2019). Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. *Long Range Planning*, 52(3), 326–349. <https://doi.org/10.1016/j.lrp.2018.12.001>
9. Li, F. (2020). The digital transformation of business models in the creative industries: A holistic framework and emerging trends. *Technovation*, 92, 102012.
10. Benbya, H., Nan, N., Tanriverdi, H., & Yoo, Y. (2020). Complexity and information systems research in the emerging digital world. *MIS Quarterly*, 44(1), 1–17.
11. Hanelt, A., Bohnsack, R., Marz, D., & Antunes Marante, C. (2021). A systematic review of the literature on digital transformation: Insights and implications for strategy and organizational change. *Journal of Management Studies*, 58(5), 1159–1197.

12. Wessel, L., Baiyere, A., Ologeanu-Taddei, R., Cha, J., & Blegind-Jensen, T. (2021). Unpacking the difference between digital transformation and IT-enabled organizational transformation. *Journal of the Association for Information Systems*, 22(1), 102–129.
13. Kretschmer, T., & Khashabi, P. (2020). Digital transformation and organization design: An integrated approach. *California Management Review*, 62(4), 86–104.
14. Sebastian, I. M., Ross, J. W., Beath, C., Mocker, M., Moloney, K. G., & Fonstad, N. O. (2020). How big old companies navigate digital transformation. In *Strategic information management* (pp. 133–150). Routledge.