Studying the Implementation of State-of the Art Meta-heuristics to Boost Energy Conservation of Residential Buildings
DOI:
https://doi.org/10.55578/jdso.2508.004Keywords:
Heating and cooling demands, Bio-inspired meta-heuristics, Residential buildings, Elman recurrent neural network, Multiverse optimization, Mountaineering team-based optimizationAbstract
Residential households consume considerable portions of energy use and CO2 emissions. Accordingly, fast and accurate prediction of magnitudes of heating and cooling demands (HD and CD) are indispensable to facilitate delivering optimum designs of energy-efficient buildings. This research paper investigates and compares nine state-of-the-art bio-inspired meta-heuristics capitalizing on their usefulness in anticipating amounts of HD and CD in residential buildings. These meta-heuristics are coupled with Elman recurrent neural network (ERNN) to build reliable energy prediction models. They involve 1) whale optimization algorithm (WOA), 2) chimp optimization algorithm (CHOA), 3) dragonfly algorithm (DA), 4) multiverse optimization algorithm (MVO), 5) mountaineering team-based optimization algorithm (MTBO), 6) antlion optimization algorithm (MVO), 7) sine–cosine optimization algorithm (SCA), 8) gold rush optimization algorithm (GRO), and 9) dung beetle optimization algorithm (DBO). The accuracies of these models are appraised using various quantitative and visual comparisons. It is concluded that the MVO-based model is the most accurate predictive model of heating demands with MAPE (9.8%), RAE (0.249), IAE (0.102), MAE (2.275) and RRSE (0.333). It is also elucidated that the MTBO-based is the most powerful forecasting model of cooling demands with MAPE (8.56%), RAE (0.26), IAE (0.091), MAE (2.233) and RRSE (0.437). In addition, the DA-based model is the least preferred in the anticipation of HD (MAPE= 15.9%, RAE=0.401, IAE=0.164, MAE=3.665 and RRSE=0.51) and CD (MAPE= 23.17%, RAE=0.691, IAE=0.241, MAE=5.926 and RRSE=1.012). With that said, it is underlined that the reported models can usher sustainable architectural designs that can support energy conservation of residential buildings.
References
1. Al-Sakkaf, A., Abdelkader, E. M., Mahmoud, S., & Bagchi, A. (2021). Studying energy performance and thermal comfort conditions in heritage buildings: A case study of murabba palace. Sustainability (Switzerland), 13(21), 1–18. https://doi.org/10.3390/su132112250
2. Sun, Z., Ma, Z., Ma, M., Cai, W., Xiang, X., Zhang, S., Chen, M., & Chen, L. (2022). Carbon Peak and Carbon Neutrality in the Building Sector: A Bibliometric Review. In Buildings (Vol. 12, Issue 2, pp. 1–31). MDPI. https://doi.org/10.3390/buildings12020128
3. Wenninger, S., Kaymakci, C., & Wiethe, C. (2022). Explainable long-term building energy consumption prediction using QLattice. Applied Energy, 308, 1–13. https://doi.org/10.1016/j.apenergy.2021.118300
4. Amasyali, K., & El-Gohary, N. (2017). Deep learning for building energy consumption prediction. Proceedings of the 6th CSCE-CRC International Construction Specialty Conference, 1–10.
5. Lee, S., Cho, S., Kim, S. H., Kim, J., Chae, S., Jeong, H., & Kim, T. (2021). Deep neural network approach for prediction of heating energy consumption in old houses. Energies, 14(1), 1–14. https://doi.org/10.3390/en14010122
6. Fu, Q., Liu, Q. S., Gao, Z., Wu, H., Fu, B., & Chen, J. (2020). A Building Energy Consumption Prediction Method Based on Integration of a Deep Neural Network and Transfer Reinforcement Learning. International Journal of Pattern Recognition and Artificial Intelligence, 34(10), 1–18. https://doi.org/10.1142/S0218001420520059
7. Yang, J., Tan, K. K., Santamouris, M., & Lee, S. E. (2019). Building energy consumption raw data forecasting using data cleaning and deep recurrent neural networks. Buildings, 9(9), 1–17. https://doi.org/10.3390/buildings9090204
8. Moon, J., Park, S., Rho, S., & Hwang, E. (2019). A comparative analysis of artificial neural network architectures for building energy consumption forecasting. International Journal of Distributed Sensor Networks, 15(9), 1–19. https://doi.org/10.1177/1550147719877616
9. Dong, Q., Xing, K., & Zhang, H. (2018). Artificial neural network for assessment of energy consumption and cost for cross laminated timber office building in severe cold regions. Sustainability (Switzerland), 10(1), 1–15. https://doi.org/10.3390/su10010084
10. D’Amico, A., Ciulla, G., Traverso, M., Lo Brano, V., & Palumbo, E. (2019). Artificial Neural Networks to assess energy and environmental performance of buildings: An Italian case study. Journal of Cleaner Production, 239, 1–21. https://doi.org/10.1016/j.jclepro.2019.117993
11. Biswas, M. A. R., Robinson, M. D., & Fumo, N. (2016). Prediction of residential building energy consumption: A neural network approach. Energy, 117, 84–92. https://doi.org/10.1016/j.energy.2016.10.066
12. Olu-Ajayi, R., Alaka, H., Sulaimon, I., Sunmola, F., & Ajayi, S. (2022). Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques. Journal of Building Engineering, 45, 1–13. https://doi.org/10.1016/j.jobe.2021.103406
13. Jia, B., Hou, D., Kamal, A., Hassan, I. G., & Wang, L. (2022). Developing machine-learning meta-models for high-rise residential district cooling in hot and humid climate. Journal of Building Performance Simulation, 15(4), 553–573. https://doi.org/10.1080/19401493.2021.2001573
14. Lee, H., Kim, D., & Gu, J. H. (2023). Prediction of Food Factory Energy Consumption Using MLP and SVR Algorithms. Energies, 16(3), 1–21. https://doi.org/10.3390/en16031550
15. Roodkoly, S. H., Fard, Z. Q., Tahsildoost, M., Zomorodian, Z., & Karami, M. (2024). Development of a simulation-based ANN framework for predicting energy consumption metrics: a case study of an office building. Energy Efficiency, 17(1), 1–24. https://doi.org/10.1007/s12053-024-10185-1
16. Borowski, M., & Zwolińska, K. (2020). Prediction of cooling energy consumption in hotel building using machine learning techniques. Energies, 13(23), 1–19. https://doi.org/10.3390/en13236226
17. Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179–211. https://doi.org/10.1207/s15516709cog1402_1
18. Guo, B., Hu, J., Wu, W., Peng, Q., & Wu, F. (2019). The Tabu_genetic algorithm: A novel method for hyper-parameter optimization of learning algorithms. Electronics (Switzerland), 8(5), 1–19. https://doi.org/10.3390/electronics8050579
19. Lorenzo, P. R., Nalepa, J., Kawulok, M., Ramos, L. S., & Pastor, J. R. (2017). Particle swarm optimization for hyper-parameter selection in deep neural networks. GECCO 2017 - Proceedings of the 2017 Genetic and Evolutionary Computation Conference, 481–488. https://doi.org/10.1145/3071178.3071208
20. Abdelkader, E. M., Al-Sakkaf, A., Alfalah, G., & Elshaboury, N. (2022). Hybrid Differential Evolution-Based Regression Tree Model for Predicting Downstream Dam Hazard Potential. Sustainability (Switzerland), 14(5), 1–21. https://doi.org/10.3390/su14053013
21. Ahmadianroohbakhsh, M., Fahool, F., Pour, M. S. S., Mojtahedi, S. F. F., Ghorbanirezaei, B., & Nehdi, M. L. (2023). Approximating Helical Pile Pullout Resistance Using Metaheuristic-Enabled Fuzzy Hybrids. Buildings, 13(2), 1–14. https://doi.org/10.3390/buildings13020347
22. Almahameed, B. aldeen, & Bisharah, M. (2023). Applying Machine Learning and Particle Swarm Optimization for predictive modeling and cost optimization in construction project management. Asian Journal of Civil Engineering, 1–14. https://doi.org/10.1007/s42107-023-00843-7
23. Jie, L., Sahraeian, P., Zykova, K. I., Mirahmadi, M., & Nehdi, M. L. (2023). Predicting friction capacity of driven piles using new combinations of neural networks and metaheuristic optimization algorithms. Case Studies in Construction Materials, 19, 1–15. https://doi.org/10.1016/j.cscm.2023.e02464
24. Mohammed Abdelkader, E., Moselhi, O., Marzouk, M., & Zayed, T. (2021). Hybrid Elman Neural Network and an Invasive Weed Optimization Method for Bridge Defect Recognition. Transportation Research Record, 2675(3), 167–199. https://doi.org/10.1177/0361198120967943
25. Tsanas, A., & Xifara, A. (2012). Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy and Buildings, 49, 560–567. https://doi.org/10.1016/j.enbuild.2012.03.003
26. Mirjalili, S., & Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008
27. Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010
28. Mirjalili, S. (2016a). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053–1073. https://doi.org/10.1007/s00521-015-1920-1
29. Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-Verse Optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495–513. https://doi.org/10.1007/s00521-015-1870-7
30. Faridmehr, I., Nehdi, M. L., Davoudkhani, I. F., & Poolad, A. (2023). Mountaineering Team-Based Optimization: A Novel Human-Based Metaheuristic Algorithm. Mathematics, 11(5), 1–40. https://doi.org/10.3390/math11051273
31. Khishe, M., & Mosavi, M. R. (2020). Chimp optimization algorithm. Expert Systems with Applications, 149, 1–26. https://doi.org/10.1016/j.eswa.2020.113338
32. Mirjalili, S. (2016b). SCA: A Sine Cosine Algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133. https://doi.org/10.1016/j.knosys.2015.12.022
33. Zolfi, K. (2023). Gold rush optimizer. A new population-based metaheuristic algorithm. Operations Research and Decisions, 33(1), 113–150. https://doi.org/10.37190/ord230108
34. Xue, J., & Shen, B. (2023). Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. Journal of Supercomputing, 79(7), 7305–7336. https://doi.org/10.1007/s11227-022-04959-6
35. Huang, M. S., Cheng, X., & Lei, Y. Z. (2021). Structural damage identification based on substructure method and improved whale optimization algorithm. Journal of Civil Structural Health Monitoring, 11(2), 351–380. https://doi.org/10.1007/s13349-020-00456-7
36. Ezzeldin, R. M., & Djebedjian, B. (2020). Optimal design of water distribution networks using whale optimization algorithm. Urban Water Journal, 17(1), 14–22. https://doi.org/10.1080/1573062X.2020.1734635
37. Diop, L., Samadianfard, S., Bodian, A., Yaseen, Z. M., Ghorbani, M. A., & Salimi, H. (2020). Annual Rainfall Forecasting Using Hybrid Artificial Intelligence Model: Integration of Multilayer Perceptron with Whale Optimization Algorithm. Water Resources Management, 34(2), 733–746. https://doi.org/10.1007/s11269-019-02473-8
38. Son, P. V. H., & Soulisa, F. V. (2023). A Hybrid Ant Lion Optimizer (ALO) Algorithm for Construction Site Layout Optimization. Journal of Soft Computing in Civil Engineering, 7(4), 50–71. https://doi.org/10.22115/SCCE.2023.365303.1540
39. Prajna, K., & Mukhopadhyay, C. K. (2024). Acoustic Emission Denoising Based on Bio-inspired Antlion Optimization: A Novel Technique for Structural Health Monitoring. Journal of Vibration Engineering and Technologies, 1–17. https://doi.org/10.1007/s42417-024-01320-4
40. Jayaram, M. A. (2022). Optimal Design of Steel Planar Trusses Using Ant Lion Algorithm. Journal of Mines, Metals and Fuels, 70(8), 432–443. https://doi.org/10.18311/jmmf/2022/32021
41. Chen, Y., Yong, W., Li, C., & Zhou, J. (2023). Predicting the Thickness of an Excavation Damaged Zone around the Roadway Using the DA-RF Hybrid Model. CMES - Computer Modeling in Engineering and Sciences, 136(3), 2507–2526. https://doi.org/10.32604/cmes.2023.025714
42. Hu, X. (2023). Use an adaptive network fuzzy inference system model for estimating the compressive strength of high-performance concrete with two optimizers improved Grey Wolf algorithm and Dragonfly optimization algorithm. Multiscale and Multidisciplinary Modeling, Experiments and Design, 6(2), 263–276. https://doi.org/10.1007/s41939-023-00142-3
43. Moayedi, H., Abdullahi, M. M., Nguyen, H., & Rashid, A. S. A. (2021). Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils. Engineering with Computers, 37(1), 437–447. https://doi.org/10.1007/s00366-019-00834-w
44. Ghannadi, P., & Kourehli, S. S. (2020). Multiverse optimizer for structural damage detection: Numerical study and experimental validation. Structural Design of Tall and Special Buildings, 29(13), 1–27. https://doi.org/10.1002/tal.1777
45. Pham, V. H. S., & Nguyen Dang, N. T. (2024). Solving time cost optimization problem with adaptive multi-verse optimizer. OPSEARCH, 1–18. https://doi.org/10.1007/s12597-023-00737-x
46. Shayeghi, H., Davoudkhani, I. F., Nabatalizadeh, J., & Bizon, N. (2024). Optimizing Energy Storage for Efficient Microgrid Operation by Mountaineering Team-Based Approach. 1–6. https://doi.org/10.1109/hora61326.2024.10550874
47. Reddy, Y. V. K., & Ramanaiah, M. L. (2023). Solving Economic Load Dispatch Problem with Mountaineering Team-Based Optimization Technique. 2023 2nd International Conference on Electrical, Electronics, Information and Communication Technologies, ICEEICT 2023. https://doi.org/10.1109/ICEEICT56924.2023.10157715
48. Yuan, Y. (2024). Application Of Chimp-based ANFIS Model For Forecasting The Compressive Strength Of The Improved High-performance Concrete. Journal of Applied Science and Engineering, 27(4), 2365–2376. https://doi.org/10.6180/jase.202404_27(4).0008
49. Babu, U. R., Gehlot, T., Thenmozhi, S., Saravanakumar, P., Ravitheja, A., & Upadhye, N. A. (2023). Chimp Optimization Algorithm with Fuzzy Cognitive Map for Vibration-based Damage Detection. 2nd International Conference on Sustainable Computing and Data Communication Systems, ICSCDS 2023 - Proceedings, 1032–1037. https://doi.org/10.1109/ICSCDS56580.2023.10105042
50. Kaveh, A., & Vazirinia, Y. (2020). An upgraded sine cosine algorithm for tower crane selection and layout problem. Periodica Polytechnica Civil Engineering, 64(2), 325–343. https://doi.org/10.3311/PPci.15363
51. Lyu, F., Fan, X., Ding, F., & Chen, Z. (2021). Prediction of the axial compressive strength of circular concrete-filled steel tube columns using sine cosine algorithm-support vector regression. Composite Structures, 273, 1–14. https://doi.org/10.1016/j.compstruct.2021.114282
52. Zhou, H., Yang, X., Tao, R., & Chen, H. (2024). Improved Sine-cosine Algorithm for the Optimization Design of Truss Structures. KSCE Journal of Civil Engineering, 28(2), 687–698. https://doi.org/10.1007/s12205-023-0314-7
53. Sarjamei, S., Massoudi, M. S., & Sarafraz, M. E. (2022). Frequency-Constrained Optimization of a Real-Scale Symmetric Structural Using Gold Rush Algorithm. Symmetry, 14(4). https://doi.org/10.3390/sym14040725
54. Zhang, Y., Li, T., Ma, T., Yang, D., & Sun, X. (2024). Short-Term Photovoltaic Power Prediction Based on Extreme Learning Machine with Improved Dung Beetle Optimization Algorithm. Energies, 17(4), 1–24. https://doi.org/10.3390/en17040960
55. Wu, Q., Xu, H., & Liu, M. (2024). Applying an improved dung beetle optimizer algorithm to network traffic identification. Computers, Materials and Continua, 78(3), 4091–4107. https://doi.org/10.32604/cmc.2024.048461
56. Wang, W., Zhang, Q., Guo, S., Li, Z., Li, Z., & Liu, C. (2024). Hazard evaluation of goaf based on DBO algorithm coupled with BP neural network. Heliyon, 10(13), 1–12. https://doi.org/10.1016/j.heliyon.2024.e34141
57. Deng, C., Xue, X., & Tao, L. (2023). Prediction of ultimate bearing capacity of concrete filled steel tube stub columns via machine learning. Soft Computing, 1–15. https://doi.org/10.1007/s00500-023-09343-x
58. Mahmood, M. S., Elahi, A., Zaid, O., Alashker, Y., Șerbănoiu, A. A., Grădinaru, C. M., Ullah, K., & Ali, T. (2023). Enhancing compressive strength prediction in self-compacting concrete using machine learning and deep learning techniques with incorporation of rice husk ash and marble powder. Case Studies in Construction Materials, 19, 1–26. https://doi.org/10.1016/j.cscm.2023.e02557
59. Rong, X., Liu, Y., Chen, P., Lv, X., Shen, C., & Yao, B. (2023). Prediction of creep of recycled aggregate concrete using back-propagation neural network and support vector machine. Structural Concrete, 24(2), 2229–2244. https://doi.org/10.1002/suco.202200469
60. Samadi, M., Sarkardeh, H., & Jabbari, E. (2020). Explicit data-driven models for prediction of pressure fluctuations occur during turbulent flows on sloping channels. Stochastic Environmental Research and Risk Assessment, 34(5), 691–707. https://doi.org/10.1007/s00477-020-01794-0
61. Verma, M. (2023). Prediction of compressive strength of geopolymer concrete using random forest machine and deep learning. Asian Journal of Civil Engineering, 24(7), 2659–2668. https://doi.org/10.1007/s42107-023-00670-w
62. Abualigah, L. (2020). Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications. In Neural Computing and Applications (Vol. 32, Issue 16, pp. 12381–12401). Springer. https://doi.org/10.1007/s00521-020-04839-1
Downloads
Published
Data Availability Statement
Data supporting this study are included within the article.
Issue
Section
License
Copyright (c) 2025 Eslam Mohammed Abdelkader, Abobakr Al-Sakkaf, Abdelazim Ibrahim, Bilal Manzoor, Abelhady Omar (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.