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Abstract 

Residential households consume considerable portions of energy use and CO2 emissions. Accordingly, fast 

and accurate prediction of magnitudes of heating and cooling demands (HD and CD) are indispensable to 

facilitate delivering optimum designs of energy-efficient buildings. This research paper investigates and 

compares nine state-of-the-art bio-inspired meta-heuristics capitalizing on their usefulness in anticipating 

amounts of HD and CD in residential buildings. These meta-heuristics are coupled with Elman recurrent 

neural network (ERNN) to build reliable energy prediction models. They involve 1) whale optimization 

algorithm (WOA), 2) chimp optimization algorithm (CHOA), 3) dragonfly algorithm (DA), 4) multiverse 

optimization algorithm (MVO), 5) mountaineering team-based optimization algorithm (MTBO), 6) antlion 

optimization algorithm (MVO), 7) sine–cosine optimization algorithm (SCA), 8) gold rush optimization 

algorithm (GRO), and 9) dung beetle optimization algorithm (DBO). The accuracies of these models are 

appraised using various quantitative and visual comparisons. It is concluded that the MVO-based model is 

the most accurate predictive model of heating demands with MAPE (9.8%), RAE (0.249), IAE (0.102), 

MAE (2.275) and RRSE (0.333). It is also elucidated that the MTBO-based is the most powerful forecasting 

model of cooling demands with MAPE (8.56%), RAE (0.26), IAE (0.091), MAE (2.233) and RRSE (0.437). 

In addition, the DA-based model is the least preferred in the anticipation of HD (MAPE= 15.9%, 

RAE=0.401, IAE=0.164, MAE=3.665 and RRSE=0.51) and CD (MAPE= 23.17%, RAE=0.691, 

IAE=0.241, MAE=5.926 and RRSE=1.012). With that said, it is underlined that the reported models can 

usher sustainable architectural designs that can support energy conservation of residential buildings. 

Keywords: Heating and cooling demands; Bio-inspired meta-heuristics; Residential buildings; Elman 

recurrent neural network; Multiverse optimization; Mountaineering team-based optimization 

1. INTRODUCTION 

Building sector accounts for approximately 39% of worldwide energy consumption and 38% of 

global Greenhouse gases [1-3]. Hence, saving energy consumption in buildings is quintessential to 

address limited energy reserves and pollution of built environment. Prediction of building energy 

consumption is an acclaimed topic that scholars have widely explored over the past few years. With the 

soaring advancements in artificial intelligence, more research endeavours are directed towards 

developing efficient data-driven models to anticipate building energy consumption. Amasyali and El-

Gohary [4] created a deep neural network model to forecast buildings’ cooling loads using weather 

pertaining conditions. Among the identified features, there were direct normal radiation, direct normal 

illuminance, dew point temperature, dry bulb temperature, wind temperature and precipitable water, 
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among others. Their model was a three-layered deep neural network that accommodated Bayesian 

regularization with Levenberg–Marquart backpropagation algorithm. Support vector machines with 

Gaussian kernel function attained the lowest testing coefficient of variation (8.59%) and determination 

coefficient (96.36%). In the same vein, Lee et al. [5] delved into finding the optimum architecture of 

deep neural network in the prediction of heating consumption of old houses. In this context, eleven key 

input factors were defined such as orientation, region, boiler type, boiler efficiency, heat transmission 

coefficients of window, door and floor besides others. The optimization of deep neural network 

architecture was triggered by the determination coefficient, such that the highest prediction accuracies 

were obtained from five hidden layers and twenty-two hidden neurons. 

In another study, Fu et al. [6] merged deep neural network alongside transfer reinforcement learning 

to ameliorate the prediction capacity of energy consumption models. In it, stack denoising autoencoder 

was added to map the features of energy consumption and propagate their traits between hidden layers. 

The output of deep neural network was then fed into deep reinforcement Sarsa algorithm to deliver the 

prediction task. Their model was able to yield mean absolute error, mean absolute percentage error, mean 

squared error and root mean squared error of 0.1153, 0.1021, 0.1304 and 0.3216, respectively. In a fourth 

study, Yang et al. [7] applied deep recurrent networks to anticipate energy consumption of institutional 

buildings. They analyzed four methods of data imputation, namely spline interpolation, ARIMA 

(autoregressive integrated moving average) with Kalman filter, exponential moving average and 

structural model with Kalman filter. It was indicated that the structural model provided the lowest RMSE 

and regularized deep networks could address overfitting issue sand enhance prediction performance. 

Another set of research studies deployed artificial neural networks in their analysis. Moon et al. [8] 

performed a comparative analysis of different typologies of artificial neural networks (ANN) in 

forecasting electric loads of buildings. In this respect, they investigated the implication of the 

hyperparameters of the activation functions and hidden layers on the performance of artificial neural 

network. Results pinpointed that the optimum architecture of artificial neural network comprised five 

hidden layers with scaled exponential linear activation function. In a second research work, Dong et al. 

[9] exploited the use of ANN to estimate energy and cost of laminated timber office buildings in cold 

regions. Latin hypercube sampling was harnessed to maintain a proper uniform distribution of input 

parameters, and it was urged that ANN models of more than ten hidden neurons were the best-performing 

ones in terms of mean squared error. 

Thirdly, D’Amico et al. [10] leveraged ANN to determine the environmental impacts and energy 

demands of non-residential buildings. Twenty-nine input variables were defined, including wind velocity, 

thermal capacity, window transmittance, heating hour, solar gains and internal gains, etc. They 

experimented three varying architectures of feedforward multi-layer perceptron. The optimal ANN 

model was found to be composed of two hidden layers with fifty and twenty-five neurons. Biswas et al. 

[11] used ANN to anticipate annual energy consumption of TxAIRE research house stepping on outdoor 

temperature, number of days and solar radiation. They tested the training algorithms of OWO-Newton 

and Levenberg-Marquardt, and they were both perceived to accomplish high determination coefficient 

values. 

A third group of studies compared the predictive abilities of machine learning models. Olu-Ajayi et 

al. [12] observed the accuracies of seven prediction models, namely linear regression, support vector 

machine, decision tree, deep neural network, random forest, artificial neural network, K-nearest neighbor, 

stacking and gradient boosting. The input explanatory features incorporated total floor area, glazed area, 

temperature, wind speed, number of heated rooms and number of habitable rooms, etc. Deep neural 

network was determined to be the most efficient model achieving Pearson correlation coefficient, mean 

absolute error, root mean squared error and mean squared error of 0.95, 0.95, 1.19 and 1.41, respectively. 

On the same note, Jia et al. [13] studied the capabilities of extreme gradient boosting, artificial neural 

network, support vector regression and multiple linear regression in anticipating cooling loads of high-

rise residential buildings. Input independent parameters comprised of dry bulb temperature, relative 

humidity, cooling setpoint, floor count, aspect ratio, equipment power density and window energy 

efficiency, etc. Results exemplified that ANN was the best meta-model, yielding the highest 

determination coefficient and lowest root mean squared error. 

In the same vein, H. Lee et al. [14] deployed multi-layer perceptron and support vector regression 

to anticipate the consumption of electricity and liquefied natural gas (LNG) in food factories. The key 
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input variables of electricity prediction included production output, operation schedules, outdoor 

humidity, outdoor temperature besides the previous day’s electricity consumption. As for liquified natural 

gas, the main input parameters involved outdoor temperature, outdoor humidity, production output, 

previous day’s pressure and temperature of LNG, previous day’s consumption of LNG, and previous 

day’s flowrate of LNG. It was underlined that multi-layer perceptron was the best-performing model in 

predicting electricity and LNG consumption. 

Roodkoly et al. [15] deployed artificial intelligence models to predict annual primary energy, 

electricity, and gas consumptions alongside CO2 emissions and percentage of comfort hours. Among the 

input parameters, there were U-values of roof, floor, exterior walls, and window alongside window to 

wall ratio, orientation, and type of HVAC (heating, ventilation, and air-conditioning) system. It was 

underlined that artificial neural network and random forest models were able to predict the target 

variables accurately while K-nearest neighbor demonstrated comparatively underperformance. On the 

same note, Borowski & Zwolińska [16] studied the use of artificial neural networks and support vector 

machine for analyzing amounts of cooling energy demand in hotels. The used input parameters involved 

relative humidity, occupancy level, hour, day of the week, average wind speed, speed direction, 

maximum wind speed, average temperature, and total hourly precipitation. Different configurations of 

artificial neural network and support vector machine were scrutinized, whereas the best performance 

scores were achieved using artificial neural network models. 

In view of previous research attempts, it can be argued that there is a lack of experimentation of the 

synergy between machine learning models and state of art meta-heuristics to amplify energy-efficient 

solutions of residential buildings. Recent advancements in Elman Recurrent Neural Networks have 

shown promise due to their ability to capture temporal dependencies and nonlinear transformations 

through recurrent connections [17]. However, ERNNs are prone to suboptimal performance and local 

minima when hyperparameters (e.g., learning rate, hidden layer size, context layer size, and momentum 

coefficient) are not meticulously tuned [18,19]. To address this, meta-heuristic algorithms are adopted 

herein for automated hyperparameter and parameter optimization of ERNN’s architecture, handling non-

linear and high-dimensional energy datasets besides, which in return, can assist in providing data-driven 

sustainable and optimal designs that are fundamentally to optimize energy efficiency of residential 

buildings. 

2. MODEL DEVELOPMENT 

The utmost objective of this research work is to devise an efficient meta-heuristic-based model for 

the prediction of HD and CD in residential buildings. This research work predicates on the exploration 

of nine state of art meta-heuristics to enhance energy efficiency of residential buildings. In this respect, 

the deployed meta-heuristics to ameliorate the prediction efficiency of Elman neural network through 

automated tuning of its hyper parameters and parameters. Elman recurrent neural network (ERNN) is a 

recurrent network that was first introduced by Elman in 1990 and it is marked by its ability to precisely 

emulate nonlinear and cumbersome processes [17]. Over the past few years, population-based meta-

heuristics established themselves as compelling tools to endorse the prediction performance of meta-

models [20-24].  

The dataset used to build and test the developed models is retrieved from the work published by 

[25]. The explored meta-heuristics herein encompass whale optimization algorithm (WOA) [26], antlion 

optimization algorithm (ALO) [27], dragonfly algorithm (DA) [28], multiverse optimization algorithm 

(MVO) [29], mountaineering team-based optimization algorithm (MTBO) [30], chimp optimization 

algorithm (CHOA) [31], sine–cosine optimization algorithm (SCA) [32], gold rush optimization 

algorithm (GRO) [33] and dung beetle optimization algorithm (DBO) [34]. The amounts of HD and CD 

are measured according to the input explanatory variables of orientation, overall height, wall area, roof 

area, surface area, relative compactness, glazing area distribution and glazing area. The efficacy of the 

developed meta-heuristic-based models is appraised using six statistical criteria of mean absolute 

percentage error, relative absolute error, integral absolute error, mean absolute error, root relative squared 

error, and objective criterion. Min-Max normalization is applied to transform input numerical features to 

a bounded interval between 0 and 1 (see Equation (1)), which diminishes the impact of feature scale 

variations and ensures the accuracy and stability of model training. 
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Xnormalized =
X − Xmin

Xmax − Xmin

                                                                                                                       (1) 

Where; 

Xmin and Xmax denote the minimum and maximum values in the energy efficacy dataset for a specific 

feature. 

3. MATERIALS AND METHODS 

This section briefly overviews the basics and previous applications in this research paper. 

3.1. Whale Optimization Algorithm 

It imitates the hunting method of humpback whales [26]. This algorithm is initiated by encircling 

the prey, whilst the present position is assumed as the location of the target prey, and the positions of 

search agents are updated using position vectors and coefficient vectors. The next step involves the 

bubble-net attacking method, i.e., the exploitation phase, which considers the two approaches of 

shrinking encircling mechanism and spiral updating position. The search for prey addresses the 

exploration phase, whereas the position vectors are mapped according to a randomly selected search 

agent rather than the best one. Practical applications of WOA included damage identification of framed 

structures [35], design of water distribution networks [36] and annual forecasting of rainfall [37]. 

3.2. Antlion Optimization Algorithm 

ALO is a bio-inspired algorithm that simulates the relationship between antlions and ants in a trap 

[27]. In this respect, ants are assumed to probe the search space and antlions are permitted to hunt them 

and get fitter using the traps. Random walk function that incorporates cumulative sum function, is used 

to emulate ants’ movements. In addition, roulette wheel is adopted to mimic hunting abilities of antlions. 

Applications of ALO included construction site layout planning [38], structural health monitoring [39] 

and design of steel planar trusses [40]. 

3.3. Dragonfly Algorithm 

DA was inspired by the dynamic and static swarming behaviours of dragonflies. There are five 

primary operators that control updating positions of dragonflies in a swarm [28]. They exhibit 

exploitative and exploratory mechanisms during the search process and they are named: 1) separation, 2) 

alignment, 3) cohesion, 4) foraging and 5) avoiding. This algorithm adopts Levy flight mechanism to 

boost exploration, exploitation and random walk of dragonflies in the search space. DA has been used in 

several engineering areas such as estimation of thickness of damaged zones [41], prediction of concrete 

compressive strength (Hu, 2023), and determination of footings bearing capacity [43]. 

3.4. Multiverse Optimization 

MVO is a nature-inspired algorithm that uses the doctrines of cosmology: wormhole, black hole, 

and white hole [29]. In this regard, the operators of white hole and black hole facilitate the exploration 

of search space while the role of worm hole is to exploit the search space. Each solution vector in the 

optimization problem is regarded as a universe and each object in the universe is considered as a variable. 

The following rules are accommodated during the optimization process: a) higher inflation rate 

implicates higher probability of finding white hole and lower probability of finding black hole, b) 

universes of higher inflation rates tend to send objects to white holes, c) universes of lower inflation rates 

tend to collect objects through back holes and d) any object in the universe can perform random search 

towards the best universe despite its inflation rate. MVO was previously explored for structural damage 

identification [44] and time-cost optimization of construction projects [45]. 

3.5. Mountaineering Team-based Optimization 

MTBO is originated from the systematized ascent of climbers to reach the mountain’s peak taking 

into consideration the likelihood of natural calamities [30]. In it, the most skilled mountain climber is 

selected as the leader and guide of the team towards the global optimum point. MTBO also models 
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natural avalanches to allow moving towards global optimization point and evading local minima 

entrapment. In addition, MTBO imitates the cooperation between team members to save trapped 

individuals in the case of occurrence of natural disasters. In the case of possible fatalities, a random new 

member replaces the deceased member. MTBO was proposed for energy storage optimization of 

microgrids 46] and addressing economic load dispatch problems [47]. 

3.6. Chimp Optimization 

CHOA is a bio-inspired algorithm that mimics the hunting mechanism of chimps of their preys [31]. 

This algorithm partitions hunting into four basic stages: a) driving, b) chasing, c) blocking and d) 

attacking. Hence, chimps are divided into four main groups called: a) drivers, b) chasers, c) blockers, 

and d) attackers. In this context, chimps first pinpoint prey’s location using drivers, blockers, and chasers. 

Afterwards, hunting is performed by the attackers chimps. Over the optimization process, drivers, chasers, 

blockers and attackers determine possible prey’s poisiton and modify their positions from the prey. 

Eventually, chaotic maps are utilized to simulate social incentive of chimps in an attempt to cirumvent 

local minima entrapment and slow convergence rates. CHOA was deployed for the anticpation of the 

compressive strength of high-performance concrete [48] and vibration-based detection of structural 

damages [49]. 

3.7. Sine-cosine Optimization 

SCA that is a population-based algorithm that is established based on the mathematical 

trigonometric functions of sine and cosine [32]. In it, different partitions of search space are explored 

when the values of since and cosine functions give values greater than 1 or less than -1. On the other 

sides, exploitation is seconded when sine and cosine functions give values between 1 and -1. Furthermore, 

the tradeoff between exploration and exploitation is maintained by adaptively modifying the values of 

sine and cosine functions. SCA was employed for tower crane selection [50], estimation of axial 

compressive strength of concrete-filled steel tubes [51] and design of truss sections [52]. 

3.8. Gold Rush Optimization 

GRO is a population-based evolutionary algorithm that draws inspiration from the movements of 

gold prospectors [33]. Upon finding a gold mine, prospectors move to find gold such that the most 

lucrative gold mine is the optimal location in the search space. In the mathematical modeling of gold 

mining, the location of gold prospector is considered as approximate position of a gold mine. Three-

person collaboration offers adaptive prospection of search region. GRO was adopted in the field of design 

optimization of symmetric structures [53]. 

3.9. Dung Beetle Optimization 

DBO is a swarm intelligence-based algorithm that is derived from the social behavior of populations 

of dung beetles [34]. DBO models the habits of 1) ball rolling, 2) dancing, 3) foraging, 4) stealing and 5) 

reproduction of dung beetles. Over the ball rolling process, dung beetles aim to adopt celestial clues to 

sustain straight line trajectory. In addition, dung beetles tend to climb on the top of the dung ball in a 

dancing position when experiencing obstacles that evade them from marching forward. Boundary 

selection strategy is usually proposed to emulate safe spawning areas, where female dung beetles lay 

their eggs. DBO was implemented in photovoltaic power modeling [54], network traffic identification 

[55] and hazard assessment of goaf [55]. 

4. PERFORMANCE EVALUATION INDICATORS 

This research study adopts six performance evaluation measures to gauge the accuracies of the 

developed heating and cooling prediction models. These measures are mean absolute percentage error, 

relative absolute error, integral absolute error, mean absolute error, root relative squared error, and 

objective criterion (see Equations (2)-(7)) [57-61]. 

MAPE =  
100

Ntot

∑ | 

n

i=1

Li
Act −  Li

Pre

Li
Act  |                                                                                                                     (2) 
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RAE =  
∑ | n

i=1 Li
Act− Li

Pre |

∑ | n
i=1 Li

Act− LAve|
 

                                                                                                                                       (3) 

IAE =  
∑ | n

i=1 Li
Act− Li

Pre |

∑ Li
Actn

i=1 

                                                                                                                                        (4) 

MAE =  
1

Ntot

∑ | 

n

i=1

Li
Act −  Li

Pre |                                                                                                                        (5) 

RRSE =  √
∑ (Li

Act −  Li
Pre)

2n
i=1  

∑ (Li
Act −  LAve)

2n
i=1

                                                                                                                        (6) 

OBJ =
(Ntr − Nte)

(Ntot)
×

(MAEtr)

(Rtr
2 )

+
(2 × Ntest)

(Ntot)
×

(MAEte)

(Rte
2 )

                                                                           (7) 

Where;  

Li
Act denotes actual heating or cooling load. Li

Pre stands for heating or cooling load. LAve is the 

average of actual HD and CD. Ntot is the size of whole dataset. Ntr and Nte are the sizes of training 

and testing datasets, respectively. MAEtr  and MAEte  are the values of mean absolute error for the 

training and testing partitions, respectively. Rtr
2  and Rte

2  are the determination coefficients of training 

and testing subsets, respectively. 

5. MODEL IMPLEMENTATION 

The developed prediction models were trained and validated using the energy efficiency dataset 

created by [25]. The used dataset consists of 768 building configurations, whereas training and testing 

subsets are composed of 614 (80%) and 154 (20%) simulations, respectively. The dataset was created 

based on simulations of the impact of different designs on energy efficiency using ECOTECT software. 

The heating and cooling demands are the predicted output features, and the input predictive features are 

all related to the building's design and envelope, and they represent a mix of continuous and categorical 

data. The eight input features are (i) relative compactness, (ii) surface area, (iii) wall area, (iv) roof area, 

(v) overall height, (vi) orientation, (vii) glazing area, and (viii) glazing area distribution. The simulation 

model was set to reflect residential buildings located in Athens, Greece, assuming an occupancy of seven 

individuals with a sedentary lifestyle. Further, U-values (thermal transmittance) are 1.78 for the walls, 

0.86 for the floors, 0.5 for the roofs, and 2.26 for the windows. 

The population size and number of iterations across all meta-heuristics are set as 200 and 50, 

respectively. Figures 1-2 illustrate the convergence behaviours of meta-heuristics in the prediction of HD 

and CD. It is interpreted that ERNN-MVO (9.99%) and ERNN-ALO (10.13%) attained the lowest values 

of training MAPE in HD prediction. On the contrary, the highest training MAPE was associated with 

ERNN-MTBO (16.85%) and ERNN-DA (15.14%). In cooling demands, ERNN-MVO (8.05%) and 

ERNN-DBO (8.67%) exhibited the smallest training MAPE. On the other side, ERNN-DA failed to learn 

the significant underlying relationships, whereas its training MAPE was 21.29%. Tables (1)-(2) display 

performance comparisons between meta-heuristics in the prediction of HD and CD, respectively. In HD 

prediction, it can be observed that ERNN-MVO was able to attain the lowest values of MAPE (9.8%), 

RAE (0.249), IAE (0.102), MAE (2.275) and RRSE (0.333). On the other hand, ERNN-MTBO had the 

highest values of MAPE (17.73%), RAE (0.424), IAE (0.174), MAE (3.881) and RRSE (0.528). It is 

also noted that ERNN-ALO was able to attain respectable prediction performance reflected in the form 

of MAPE (9.93%), RAE (0.282), IAE (0.116), MAE (2.582) and RRSE (0.347). In addition to that, 

ERNN-MTBO wasn't able to predict HD such that it achieved MAPE, RAE, IAE, MAE, and RRSE of 

17.73%, 0.424, 0.174, 3.881, and 0.528, respectively. 

As for CD, ERNN-MVO provides the lowest MAPE (8.17%) while ERNN-MTBO obtains the 

smallest RAE (0.26), IAE (0.091), MAE (2.233) and RRSE (0.437). On the other side, ERNN-DA yields 

the largest MAPE (23.17%), RAE (0.691), IAE (0.241), MAE (5.926) and RRSE (1.012). It is also 

observed that ERNN-MTBO obtained acceptable prediction patterns with MAPE (8.56%), RAE (0.26), 

IAE (0.091), MAE (2.233) and RRSE (0.437), Table 3 expounds relevant scores of OBJ criterion of 

developed prediction models. It is shown that ERNN-MVO (2.51), ERNN-ALO (2.56) and ERNN-WOA 
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(2.99) had the smallest scores of OBJ criterion, which marks that ERNN-MVO is the best fitted model 

in HD prediction. On the flip side, ERNN-DA (5.34) and ERNN-MTBO (5.14) obtained the highest 

values, demonstrating their deficient performance. In relation with CD, it is viewed that the smallest 

values of OBJ criterion were linked with ERNN-MTBO (2.51), ERNN-DBO (2.68) and ERNN-MVO 

(2.69), which implies that ERNN-MTBO is the best performing model. On the other hand, ENN-DA 

(10.55) and ENN-SCA (4.87) instilled the largest values of OBJ criterion in CD prediction, appending 

them as the least preferred models. 

 
Fig. 1. Convergence behaviours of meta-heuristics in projecting HD 

 
Fig. 2. Convergence behaviours of meta-heuristics in projecting CD 

Table 1. Performance comparison between meta-heuristics in anticipating HD 

Metric 
ERNN-

WOA 

ERNN

-ALO 

ERNN-

DA 

ERNN-

MVO 

ERNN-

MTBO 

ERNN-

CHOA 

ERNN-

SCA 

ERNN-

GRO 

ERNN-

DBO 

MAPE 12.33% 9.93% 15.9% 9.8% 17.73% 14.62% 14.07% 12.31% 13.43% 

RAE 0.282 0.249 0.401 0.249 0.424 0.361 0.339 0.326 0.342 

IAE 0.116 0.102 0.164 0.102 0.174 0.148 0.139 0.133 0.14 

MAE 2.582 2.279 3.665 2.275 3.881 3.299 3.102 2.977 3.123 

RRSE 0.347 0.334 0.51 0.333 0.528 0.445 0.428 0.441 0.428 
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Table 2. Performance comparison between meta-heuristics in anticipating CD 

Metric 
ERNN-

WOA 

ERNN-

ALO 

ERNN-

DA 

ERNN-

MVO 

ERNN-

MTBO 

ERNN-

CHOA 

ERNN-

SCA 

ERNN-

GRO 

ERNN-

DBO 

MAPE 9.95% 8.99% 23.17% 8.17% 8.56% 12.47% 13.86% 10.10% 8.58% 

RAE 0.307 0.28 0.691 0.264 0.26 0.379 0.447 0.291 0.275 

IAE 0.107 0.098 0.241 0.092 0.091 0.132 0.156 0.101 0.096 

MAE 2.635 2.406 5.926 2.261 2.233 3.253 3.831 2.492 2.362 

RRSE 0.5 0.464 1.012 0.47 0.437 0.592 0.696 0.449 0.47 

Table 3. Results of OBJ criterion in the anticipation of HD and CD 

Model OBJ criterion (HD)  OBJ criterion (CD)  

ERNN-WOA 2.99 3.11 

ERNN-ALO 2.56 2.79 

ERNN-DA 5.34 10.55 

ERNN-MVO 2.51 2.69 

ERNN-MTBO 5.14 2.51 

ERNN-CHOA 3.99 4.37 

ERNN-SCA 3.51 4.87 

ERNN-GRO 3.61 2.94 

ERNN-DBO 3.96 2.68 

Figures 3-6 demonstrate visual comparisons between some of the developed prediction models. It 

can be observed that the developed ERNN-ALO generated HD near to the actual ones. In addition, the 

forecasted CD by ERNN-MVO exhibited close proximity to the actual values. On the contrary, ERNN-

CHOA and ERNN-DA obtained quite far HD and CD from the actual data. 

 
Fig. 3. Actual and predicted HD using ERNN-ALO 
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Fig. 4. Actual and predicted HD using ERNN-CHOA 

 
Fig. 5. Actual and predicted CD using ERNN-MVO 

 

Fig. 6. Actual and predicted CD using ERNN-DA 
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Figures 7-10 depict correlation charts of ERNN-MVO, ERNN-DA, ERNN-MTBO and ERNN-SCA. 

It is shown that the predicted HD by ERNN-MVO were concordant with the real values (R2=0.894). 

Furthermore, it can be said high consistencies were observed between forecasted CD by ERNN-MTBO 

(R2=0.879) and their counterpart actual values. 

 
Fig. 7. Correlation analysis of HD using ERNN-MVO 

 
Fig. 8. Correlation analysis of HD using ERNN-DA 
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Fig. 9. Correlation analysis of CD using ERNN-MTBO  

 

Fig. 10. Correlation analysis of CD using ERNN-SCA 

Box plots of observed and predicted distributions of HD and CD are expounded in Figures 11-12. 

Visual comparison reveals that ERNN-MVO and ERNN-ALO are the most accurate predictive models 

of HD. Moreover, it is manifested that mean and spread of predicted CD by ERNN-MTBO and ERNN-

MVO are pretty close to the actual values. Conversely, ERNN-DA, ERNN-CHOA and ERNN-SCA 

produced quite CD that are quite departed from the actual targets. 
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Fig. 11. Box plot analysis of HD 

 

Fig. 12. Box plot analysis of CD 

In light of above analysis, it is evident that MVO and MTBO demonstrate superior performance 

compared to other metaheuristic algorithms in terms of solution accuracy and robustness. The high 

accuracies of MVO in HD prediction stems from its ability to exhibit a well-tuned balance between 

exploration and exploitation phases. Further, it is primarily inspired by three cosmological phenomena: 

white holes, black holes, and wormholes [62]. These concepts are mathematically modelled to drive 

exploration, exploitation, and local search, respectively. In addition, MVO has fewer hyperparameters 

compared to some other algorithms, making it more stable across different problems [62]. Similarly, 

MVO demonstrated consistent dominance over other optimization algorithms (particle swarm, genetic 

algorithm, firefly algorithm, bat algorithm, and gravitational search algorithm) when evaluated on 

multimodal benchmark functions, further underscoring its effectiveness in evading local minima 

solutions and premature convergence [62]. MTBO's improved effectiveness in CD prediction arises from 

its faster convergence to global optimum solutions due to its team-based collaboration mechanism 30]. 

Additionally, MTBO offers enhanced population diversity, and its dynamic mechanism assists in 

coordinating exploratory and exploitative behaviors, which systematically aids in efficiently locating 

globally optimal solutions [46]. 
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6. CONCLUSIONS 

Surging escalations in energy consumption and CO2 emissions call for designing energy-efficient 

buildings. With that in mind, this paper introduced a pile of meta-heuristic-based models for assessing 

magnitudes of HD and CD. Nine population-based meta-heuristics were experimented and compared 

based on statistical indicators and visual diagrams. Results explicated that ERNN-MVO (OBJ=2.51) and 

ERNN-ALO (OBJ=2.56) had the best performances in predicting amounts of HD while ERNN-MTBO 

(OBJ=5.14) and ERNN-DA (OBJ=5.34) were the least efficient models. At the level of CD, ERNN-

MTBO (OBJ=2.51) and ERNN-MVO (OBJ=2.69) were able to address the issue of its accurate 

anticipation while ERNN-DA (OBJ=10.55) and ERNN-SCA (OBJ=4.87) failed in its emulation. The 

results of performance indicators complied with the outputs of OBJ criterion. In this context, the 

developed ERNN-MVO was found to be the best model of HD with MAPE, RAE, IAE, MAE, and RRSE 

of 9.8%, 0.249, 0.102, 2.275, and 0.333, respectively. Moreover, ERNN-MTBO was the most accurate 

prediction model of CD, whereas it yielded MAPE, RAE, IAE, MAE, and RRSE of 8.56%, 0.26, 0.091, 

2.233, and 0.437 respectively. Counting on the obtained results, the developed models can assist 

architects in endorsing early designs of energy-efficient buildings.  

Despite their promising results, the proposed meta-heuristic-based ERNN models are subject to 

some limitations. It is important to note that the developed models are specifically designed and validated 

for residential buildings. Application to commercial, institutional or industrial buildings would require 

architectural and operational adjustments to the input parameters of the energy prediction models. Future 

research may accommodate the integration of advanced meteorological data to ameliorate the robustness 

and efficaciousness of energy prediction models. Consequently, the selection of appropriate climatic 

variables, such as dry bulb temperature, solar irradiance, relative humidity, and wind speed and direction, 

can potentially enhance the model's accuracy for future-year energy simulations. Another potential 

research avenue is creating a larger and more diverse dataset encompassing a wider range of climates, 

architectural styles, construction materials, occupancy patterns, and HVAC system types which would 

be necessary to bolster the models’ reliability and reduce the risk of overfitting to specific data 

characteristics. 
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